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Hasse-Weil L-functions
Let X be a nice algebraic variety over Q. For w = 0, . . . , 2dim(X), we get an associated
(incomplete) Hasse-Weil L-function built out of Euler factors:

Lw(X, s) =
∏

p
Lp(X, p−s)−1 =

∞∑
n=1

an
ns , Lp(X,T) := det(1− T Frobp,Hw

et(X,Qℓ)
Ip).

We can similarly define L(M, s) for M a motive factor of Hw(X); we refer to w as the weight
of M and r = dim(M) as the degree. A prime p is good if Ip acts trivially, and bad otherwise.
We have deg(Lp(X,T)) ≤ r, with equality iff p is good. One can define the conductor N as a
certain product of powers of the bad primes, and the completed L-function Λ(M, s) as the
product of L(M, s) with Ns/2 and a certain product of Gamma factors.

Goal
Gather numerical data for such L-functions: zero distribution, special values, analytic
continuation and functional equation, murmurations. Want a diverse source of motives where
L(M, s) is computable, with varying weight, degree, and Hodge numbers.

David Roe (MIT) Hypergeometric L-functions JMM 2025 2 / 16



Hypergeometric data
A hypergeometric datum over Q of degree r is defined by two disjoint tuples

(α1, . . . , αr), (β1, . . . , βr) over Q ∩ [0, 1)

which are each Galois-stable: the multiplicity of any reduced fraction depends only on its
denominator. For example

α = (14 ,
1
2 ,

1
2 ,

3
4), β = (13 ,

1
3 ,

2
3 ,

2
3).

This datum defines a family of hypergeometric motives Mα,β
z over z ∈ Q \ {0, 1}, and a family

of degree r L-functions, where Fp(T) := Lp
(
Mα,β

z ,T
)
= 1− apT + · · · ∈ Z[T] is of degree at

most r. The Hodge vector and motivic weight can be read from the zigzag function

Zα,β(x) := #{j : αj ≤ x} − #{j : βj ≤ x}.
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Hypergeometric families in the wild
Legendre Family: Et : y2 = x(1− x)(x − t)

H1(Et,Q) ≃ Mα,β
t where α = (12 ,

1
2), β = (1, 1).

Dwork family: Xλ : x4 + y4 + z4 + w4 − 4λxyzw = 0 ⊂ P3

H2(Xλ,Q) = Pic(Xλ)⊕ Tλ (22 = 19 + 3)

Tλ ≃ Mα,β
λ4 where α = (14 ,

1
2 ,

3
4), β = (1, 1, 1).

K3 family with Picard rank 16: Xλ : x3y + y4 + z4 + w4 − 12λxyzw = 0 ⊂ P3

H2(Xλ,Q) = Pic(Xλ)⊕ Tλ (22 = 16 + 6)

Tλ ≃ Mα,β
21036λ12 where α = ( 1

12 ,
1
6 ,

5
12 ,

7
12 ,

5
6 ,

11
12),

β = (0, 0, 0, 13 ,
1
2 ,

2
3).
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L-functions of hypergeometric motives
L
(
Mα,β

z , s
)
=

∏
p

Fp
(
p−s) = ∑

n≥1

an
ns

The primes p of bad reduction (i.e., deg Fp < r) have the following forms.
p is wild if vp(γ) < 0 for some γ ∈ α ∪ β (e.g., 2 and 3 in our last example).
p is tame if it is not wild, and either vp(z) ̸= 0 or vp(z − 1) ̸= 0.

Completing the L-function gives
Λ(s) := N s/2 · Γα,β(s) · L

(
Mα,β

z , s
)
.

We expect Λ to satisfy the functional equation

Λ(s) = ±Λ(w + 1− s)

To numerically study the analytic properties of Λ(s) and check its functional equation one
needs to know

an ≤ B, where B = O(
√

N).
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The Good, the Tame and the Wild

L
(
Mα,β

z , s
)
=

∏
p

Fp
(
p−s) = ∑

n≥1

an
ns = Lgood(s) · Ltame(s) · Lwild(s)

We do not yet have formulas for Fp at the wild primes.
There is a recipe for Fp at the tame primes.
For p a good prime (neither wild nor tame), Fp(T) = det(1− T Frobp |Mα,β

z ) may be
recovered from a trace formula of the shape

Tr(Frobq) = Hq

(
α
β

∣∣∣z) :=
1

1− q

q−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)∗m
(βj)∗m

 [z]m,

where [z] is the multiplicative lift of z mod p and (γ)∗m is a p-adic variant of the Pochhammer
symbol (γ)m = γ(γ + 1) · · · (γ + m − 1).
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Hypergeometric L-functions in average polynomial time

ap = Hp

(
α
β

∣∣∣z) :=
1

1− p

p−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)∗m
(βj)∗m

 [z]m,

where [z] is the multiplicative lift of z mod p and (γ)∗m is a p-adic variant of the Pochhammer
symbol (γ)m = γ(γ + 1) · · · (γ + m − 1).

Theorem (Costa–Kedlaya–R, 2024)
We exhibit an algorithm to compute ap for all primes p ≤ X.
For fixed α, β, and z the time and space complexities are both Õ(X).

Our initial algorithm (2020) allowed computation of L-functions with motivic weight 1; the
2024 version dropped the restriction on weight.

github.com/edgarcosta/amortizedHGM
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Amortization over primes

ap = Hp

(
α
β

∣∣∣z) :=
1

1− p

p−2∑
m=0

±pξ(m)

 r∏
j=1

(αj)∗m
(βj)∗m

 [z]m,

where [z] is the multiplicative lift of z mod p and (γ)∗m is a p-adic variant of the Pochhammer
symbol (γ)m = γ(γ + 1) · · · (γ + m − 1).

The implementations in Magma and Sage compute ap one p at a time. Since the sum is over
O(p) terms, computing all prime Dirichlet coefficients up to X requires Õ(X 2) arithmetic
operations.
The shape of the formula makes it feasible to amortize this complexity over p, thus requiring
Õ(X) arithmetic operations.
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Timings: working (mod p1), degree = 4,weight = 1

David Roe (MIT) Hypergeometric L-functions JMM 2025 9 / 16



Timings: working (mod p3), degree = 6,weight = 5
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Amortization ingredients

Overall approach is via accumulating remainder trees, following Costa, Gerbicz, Harvey,
and Sutherland;
Use a generic prime, with computations in Z[P]/Pe amortized with polynomial arithmetic
and then substituting P = p

1−p afterward;
Break amortization up by dividing [0, p − 2] into pieces based on locations of α and β;
Divide primes into arithmetic progressions modulo the denominators from α and β;
Precompute various p-adic gamma factors using a similar amortization method
(independent of z, only mild dependence on α and β)
Extract the desired sum from a product of block triangular matrices, using accumulating
remainder trees to compute the product modulo all necessary p.
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Accumulating remainder trees: Wilson primes

The Alhazen–Wilson theorem states that (p − 1)! ≡ −1 (mod p) for all primes p. A Wilson
prime is one so that (p − 1)! ≡ −1 (mod p2). The only known examples are p = 5, 13, 563.

Costa–Gerbicz–Harvey computed (p − 1)! + 1 (mod p2) for all p ≤ X = 2× 1013 using a new
technique that reduced the overall complexity from Õ(X 2) to Õ(X ).

The idea is to replace the separate computation of (p − 1)! + 1 (mod p2) with the serial
computation of

n! (mod
∏

n<p≤X
p2) for n = 0, . . . ,X − 1.

To make this work, this serialization must be balanced against making the moduli so large that
they slow down the computation. Harvey–Sutherland generalized this process into
accumulating remainder trees.
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Accumulating remainder trees
Given integers (or matrices) A0, . . . ,Ab−1 and integers m0, . . . ,mb−1, we want to compute
simultaneously

Cj := A0 . . .Aj−1 (mod mj) (j = 0, . . . , b − 1).

For simplicity, assume b = 2ℓ. Form a complete binary tree of depth ℓ with nodes (i, j) where
i = 0, . . . , ℓ and j = 0, . . . , 2i − 1. By computing from the leaves to the root, we can compute
products over diadic ranges:

mi,j := mj2ℓ−i . . .m(j+1)2ℓ−i−1,

Ai,j := Aj2ℓ−i . . .A(j+1)2ℓ−i−1.

Then from the root to the leaves, we compute the products Ci,j := Ai,0 . . .Ai,j−1 (mod mi,j) by
writing C0,0 = 1 and

Ci,j =

{
Ci−1,⌊j/2⌋ (mod mi,j) j ≡ 0 (mod 2)

Ci−1,⌊j/2⌋Ai,j−1 (mod mi,j) j ≡ 1 (mod 2).
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Example: (p − 1)! (mod p) (Harvey–Sutherland 2014)
Set m0, . . . ,m7 to be the first 8 odd numbers, with composites replaced by 1

Ai = (i + 1)(i + 2).

Ci,j =

{
Ci−1,⌊j/2⌋ (mod mi,j) j ≡ 0 (mod 2)

Ci−1,⌊j/2⌋Ai,j−1 (mod mi,j) j ≡ 1 (mod 2).
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Next steps

We want to add a bunch of interesting hypergeometric L-functions to the LMFDB. Two main
obstacles:

1 We need to choose good specialization points z. In order to keep the conductor small, we
want both z and z − 1 to only have small prime factors. We can achieve this by solving
S-unit equations, but this approach won’t practically be able to ever guarantee all
L-functions in a family below a certain conductor bound.

2 The wild L-factors are still not pinned down. Ongoing work by Roberts–Rodriguez Villegas
may help, and we can numerically check possible factors using the functional equation.
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https://lmfdb.org


Thank you!
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