Algebraic Tori

A database of p-adic tori

David Roe

Department of Mathematics Massachusetts Institute of Technology

Representation Theory of Groups Defined over Local Fields CMS19, Regina, SK

June 8, 2019

Algebraic tori

Definition

An algebraic torus over a field K is a group scheme T, isomorphic to $(\mathbb{G}_m)^n$ after tensoring with a finite extension.

Can also give $T(\bar{K})$ plus a continuous action of $Gal(\bar{K}/K)$ on it.

Examples over \mathbb{R}

Algebraic Tori

000000

- **U**, with $\mathbf{U}(\mathbb{R}) = \{z \in \mathbb{C}^{\times} : z\bar{z} = 1\}$,
- \bullet \mathbb{G}_m , with $\mathbb{G}_m(\mathbb{R}) = \mathbb{R}^{\times}$,
- S, with $S(\mathbb{R}) = \mathbb{C}^{\times}$.

Theorem (c.f. [1, Thm 2])

Every algebraic torus over \mathbb{R} is a product of these tori.

Character lattices

Definition

Algebraic Tori

0000000

The character lattice of T is $X^*(T) = \text{Hom}_{\bar{K}}(T, \mathbb{G}_m)$,

 $X^*(T)$ is a free rank-n \mathbb{Z} -module with a $Gal(\bar{K}/K)$ action. Can take $\{\chi_i: (z_1,\ldots,z_n)\mapsto z_i\}$ as a basis for $X^*(\mathbb{G}_m^n)$.

- $X^*(\mathbb{G}_m) = \mathbb{Z}$ with trivial action,
- $X^*(\mathbf{U}) = \mathbb{Z}$ with conjugation acting as $x \mapsto -x$,
- $X^*(S) = \mathbb{Z}v \oplus \mathbb{Z}w$ with conjugation exchanging v and w.

Theorem

The functor $T \mapsto X^*(T)$ defines a contravariant equivalence of categories K-**Tori** \to Gal(\bar{K}/K)-**Lattices** (with continuous action).

- A continuous action of $\operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)$ on a lattice \mathbb{Z}^n will factor through a finite quotient $G = \operatorname{Gal}(L/\mathbb{Q}_p)$,
- and a faithful action of G on \mathbb{Z}^n is the same as an embedding $G \hookrightarrow \operatorname{GL}_n(\mathbb{Z})$.

We may thus break up the task of finding tori into three parts:

- For each dimension n, list all finite subgroups G of $GL_n(\mathbb{Z})$ (up to conjugacy). For fixed n, the set of such G is finite.
- ② For each G and p, list all Galois extensions L/\mathbb{Q}_p with $\operatorname{Gal}(L/\mathbb{Q}_p) \cong G$. For fixed G and p, the set of L is finite. Moreover, when p does not divide |G|, doing so is easy.
- § For each G, compute the automorphisms of G (up to $GL_n(\mathbb{Z})$ -conjugacy).

We will refer to such a pair (G, L) as a *prototorus*.

Algebraic Tori

0000000

The difference between a conjugacy class of embeddings $G \hookrightarrow GL_n(\mathbb{Z})$ and a conjugacy class of subgroups $G \subset GL_n(\mathbb{Z})$ is measured by the quotient A/W, where

$$A = \operatorname{\mathsf{Aut}}(G)$$
 $W = N_{\operatorname{\mathsf{GL}}_n(\mathbb{Z})}(G)/C_{\operatorname{\mathsf{GL}}_n(\mathbb{Z})}(G).$

We refer to the size a of A/W as the ambiguity of G. Given a prototorus (G, L), there are a corresponding isomorphism classes of tori, each with splitting field L.

Example

Algebraic Tori

0000000

The subgroup generated by

$$\alpha_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

is isomorphic to C_2^2 , and has both normalizer and centralizer $\langle \alpha_1, \alpha_2, -I \rangle \cong C_2^3$. Since $A \cong S_3$, we have a = 6. Suppose p is odd and L is the compositum of the three quadratic extensions L_1, L_2 and L_3 of \mathbb{Q}_p . Let $\sigma_i \in \text{Gal}(L/\mathbb{Q}_p)$ be the nontrivial element fixing L_i , and T the torus corresponding to the map $\sigma_i \mapsto \alpha_i$. Then $T(\mathbb{Q}_p) \cong \mathsf{Nm}^1_{L_1/\mathbb{Q}_p} \times L_2^{\times}$. Each of the six labelings of the L_i produces a distinct torus.

Isogenies

Algebraic Tori

000000

- Two G-lattices are isomorphic iff the corresponding maps $G \to \mathsf{GL}_n(\mathbb{Z})$ are $\mathsf{GL}_n(\mathbb{Z})$ -conjugate.
- Two G-lattices are isogenous iff the corresponding maps are $GL_n(\mathbb{Q})$ -conjugate.
- Just as a = A/W measures the number of isomorphism classes of tori for a given prototorus, a' = A/W' measures the number of isogeny classes for a given pair (G', L), where G' is now up to $GL_n(\mathbb{Q})$ -conjugacy. Here

$$W' = N_{\mathsf{GL}_n(\mathbb{Q})}(G)/C_{\mathsf{GL}_n(\mathbb{Q})}(G).$$

 $\mathbb{G}_m \times \mathbf{U}$ and **S** are isogenous but not isomorphic, since $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are conjugate in $GL_n(\mathbb{Q})$ but not in $GL_n(\mathbb{Z})$.

I MFDB

Algebraic Tori

The L-functions and modular forms database (LMFDB) aims to make interesting objects in number theory and arithmetic geometry available for researchers to browse and search. It currently includes

- Global and local number fields.
- Classical, Hilbert, Bianchi and Maass modular forms.
- over \mathbb{O} , abelian varieties over finite fields.
- Galois groups and Sato-Tate groups.
- L-functions for many of these objects.

Improved group theory, including subgroups of $GL_n(\mathbb{Z})$, is under active development.

Existing ingredients

Algebraic Tori

Jones-Roberts database of local fields [3]

- Included in LMFDB
- p-adic fields of degree up to 15 for p < 200
- Missing sibling information (other fields with same closure)
- Only gives ramification breaks, not ramification subgroups

Matrix groups

GAP and Magma include databases of matrix groups [2, 4]

- All $G \subset GL_n(\mathbb{Z})$ for $n \leq 6$, up to conjugacy
- Maximal irreducible $G \subset GL_n(\mathbb{Z})$ for $n \leq 31$, up to $GL_n(\mathbb{Q})$ -conjugacy
- Maximal irreducible $G \subset GL_n(\mathbb{Z})$ for $n \leq 11$ and $n \in \{13, 17, 19, 23\}$, up to $GL_n(\mathbb{Z})$ -conjugacy

A database of tori

Demo

Algebraic Tori

tori.lmfdb.xyz

Number of Subgroups (up to $GL_n(\mathbb{Z})$ -conjugacy)

Dimension	1	2	3	4	5	6
Real	2	4	6	9	12	16
Unramified	2	7	16	45	96	240
Tame	2	13	51	298	1300	6661
7-adic	2	10	38	192	802	3767
5-adic	2	11	41	222	890	4286
3-adic	2	13	51	348	1572	9593
2-adic	2	11	60	536	4820	65823
Local	2	13	67	633	5260	69584
All	2	13	73	710	6079	85308

Each subgroup can correspond to many tori: multiple L/\mathbb{Q}_n with $G \cong \operatorname{Gal}(L/\mathbb{Q}_p)$, and ambiguity.

Dimension	1	2	3	4	5	6
Real	2	2	2	2	2	2
Unramified	2	6	6	12	12	30
Tame	2	12	12	40	72	144
7-adic	2	8	12	40	40	120
5-adic	2	12	12	40	72	144
3-adic	2	12	12	72	72	432
2-adic	2	12	48	576	1152	2304
Irreducible	2	12	48	1152	3840	103680
Weyl	A_1	G_2	B_3	F_4	B_5	$2 \times E_6$

Dim	Largest Irreducible Subgroup
7	2903040 (E ₇)
8	$696729600 (E_8)$
31	$17658411549989416133671730836395786240000000 (B_{31})$

p-realizable groups

Algebraic Tori

We say a group G is p-realizable if there is an extension L/\mathbb{Q}_p with $G \cong \operatorname{Gal}(L/\mathbb{Q}_p)$. The group generated by

$$\left\langle \begin{pmatrix} -1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ -1 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & -1 \\ -1 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \right\rangle$$

has order 1152. It is not p-realizable for any p. In a p-adic Galois group, the quotient by wild inertia must be metacyclic (cyclic subgroup with cyclic quotient).

- G is not metacyclic, so only p=2 and p=3 possible
- For p=2, the quotient by the p-core (largest normal *p*-subgroup) is S_3^2 which is not metacyclic.
- For p = 3, the *p*-core is trivial.

What to compute?

Algebraic Tori

- Easy: \mathbb{Q}_p -rank; whether unramified, tame, anisotropic, split, induced; dual torus
- Artin and swan conductors, discriminants
- Alternate descriptions: units in étale algebras (possibly with involution)
- Description of $T(\mathbb{Q}_p)$, Moy-Prasad filtration
- Néron models, behavior under base change
- Embeddings into reductive groups
- Fixed set for action on Bruhat-Tits building
- Tate cohomology groups $\hat{\mathsf{H}}(\mathbb{Q}_p, X^*(T))$
- Rationality, stable rationality, retract rationality, unirationality; flasque and coflasque
- Resolutions: $0 \to F \to M \to T \to 0$ with M induced and F flasque.

Computing with large field extensions

Definition

Algebraic Tori

Let L/K be a Galois extension of fields. A *core* for L/K is an extension C/K so that L is the Galois closure of C.

The degree [C:K] can be exponentially smaller than [L:K]: if $Gal(L/K) = S_n$ we can find [C:K] = n while [L:K] = n!.

Question

 $T(K) \cong (X_*(T) \otimes L^{\times})^{\operatorname{Gal}(L/K)}$ is usually expressed in terms of L. Can it be computed directly from some C (along with knowledge of $Gal(L/C) \subset Gal(L/K)$?

Applications

Algebraic Tori

- Yu's construction of supercuspidal representations isn't known to be exhaustive in small residue characteristic; I hope the database can be useful in working with examples of such representations.
- The behavior of Néron models under wild base change has always been a mystery to me. I hope examples can help clarify the situation.
- Understanding maximal tori in exceptional groups. Tame tori in exceptional groups have been studied by Reeder [5]. Wild tori in exceptional groups only occur in small characteristic and dimension, making them a perfect target for a database.

References

Algebraic Tori

- [1] B. Casselman. Computations in real tori, Representation theory of real groups, Contemporary Mathematics 472, A.M.S. (2007).
- [2] C. Cid, J. Opgenorth, W. Plesken, T. Schulz. CARAT. wwwb.math.rwth-aachen.de/carat/.
- [3] J. Jones, D. Roberts. A database of local fields, J. Symbolic Comput 41 (2006), 80-97.
- [4] G. Nebe, W. Pleskin, M. Pohst, B. Souvignier. Irreducible maximal finite integral matrix groups. GAP Library.
- [5] M. Reeder. Elliptic centralizers in Weyl groups and their coinvariant representations. Representation Theory 15 (2011), 63–111.