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Inverse Galois Problem

Classic Problem: determine if a finite G is a Galois group.
Depends on base field: every G is a Galois group over C(t).
Most work focused on L/Q: S n and An, every solvable
group, every sporadic group except possibly M23, . . .

Generic polynomials fG(t1, . . . , tr, X) are known for some
(G,K): every L/K with group G is a specialization.

Computational Problems
Given a finite group G, find algorithms for

1 Existence problem: exist L/Qp with Gal(L/Qp) � G?
2 Counting problem: how many such L exist (always finite)?
3 Enumeration problem: list the L.
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Extensions of p-adic fields

If L/K is an extension of p-adic fields, it decomposes:

L

Lt

Lu

K

wild

tame

unram

Wild – totally ramified, degree a power of p.
Tame – totally ramified, degree relatively
prime to p. Have Lt = Lu(

n√π) for some
uniformizer π ∈ Lu.
Unramified – there is a unique unramified
extension of each degree: equivalence of
categories with extensions of the residue
field.
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Filtrations of p-adic Galois groups

The splitting of L/K into unramified, tame and wild pieces
induces a filtration on Gal(L/K). We can refine this filtration to

G ⊵ G0 ⊵ G1 ⊵ G2 ⊵ · · · ⊵ Gr = 1.

For every i, Gi ⊴ G;
G/G0 = ⟨σ⟩ is cyclic, and LG0 = Lu;
G0/G1 = ⟨τ⟩ is cyclic, order prime to p and σ−1τσ = τq;
For 0 < i < r, Gi/Gi+1 � F

ki
p .

Necessary condition: G must be solvable with such a filtration.
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Absolute Galois groups

In the projective limit, get a tower of infinite extensions:

K̄

Kt

Ku

K

wild

tame

unram

Gal(Ku/K) = ⟨σ⟩ � Ẑ
Gal(Kt/Ku) = ⟨τ⟩ �∏ℓ,p Zℓ

σ−1τσ = τq

Gal(K̄/Kt) is pro-p.
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Presentation of the absolute Galois group

For p > 2, Gal(Q̄p/Qp) is the profinite group generated by
σ, τ, x0, x1 with x0, x1 pro-p and the following relations (see [7])

τσ = τp

⟨x0, τ⟩−1xσ0 = xp
1

[
x1, x

τ
p+1
2

1

{
x1, τ

p+1
2

}σ2τ(p−1)/2
2

{{
x1, τ

p+1
2

}
, σ2τ

(p−1)/2
2

}σ2τ(p+1)/2
2 +τ

(p+1)/2
2

]
h ∈ Zp with mult. order p − 1, projp : Ẑ→ Zp

⟨x0, τ⟩ := (x0τxhp−2
0 τ . . . xh

0τ)
projp /(p−1)

β : Gal(Qt
p/Qp)→ Z×p β(τ) = h β(σ) = 1

{x, ρ} := (xβ(1)ρ2xβ(ρ)ρ2 . . . xβ(ρ
p−2)ρ2)projp /(p−1)

σ2 := proj2(σ) τ2 := proj2(τ)
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Counting algorithm

The number of extensions L/Qp with Gal(L/Qp) � G is

1

#Aut(G)
#
{
φ : Gal(Q̄p/Qp)↠ G

}
So it suffices to count the tuples σ, τ, x0, x1 ∈ G that

1 satisfy the relations from Gal(Q̄p/Qp),
2 generate G.

Overall Strategy
Loop over σ generating the unramified quotient and τ
generating the tame inertia (with τσ = τp). For each such (σ, τ)
up to automorphism, count the valid x0, x1.
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Counting x0, x1

The hard relation has x0 in LHS only, x1 in RHS only.
If we didn’t have to worry about (σ, τ, x0, x1) generating,
could count collisions: for each y in the p-core, the
product of the number of ways it can be represented as
LHS with the number as RHS.
Can make this work when the p-core is multiplicity free as
a representation of the tame quotient, using a lemma on
generating sets for p-groups.
Naive looping faster for small G.
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Conclusions
Assume p > 2. Call a group potentially p-adic if

1 it has a valid filtration,
2 in the case that the order is a power of p, it has one or two

generators.

Notable Examples (p = 3)
Label Description Num
36G7 (C3 ×C3) ⋊C4 0
54G6 (C9 ⋊C3) ⋊C2 49
54G14 (C3 ×C3 ×C3) ⋊C2 0
54G15 C6 ×C3 ×C3 0
72G33 (C12 ×C3) ⋊C2 0
18T89 (C3 × ((C3 ×C3) ⋊C3)) ⋊C2 0
18T128 (C3 ×C3 ×C3 ×C3) ⋊C4 0
18T138 ((C3 ×C3) ⋊C2) × ((C3 ×C3) ⋊C2) 0
15T64 (C3 × (((C3 ×C3 ×C3 ×C3) ⋊C5) ⋊C4)) ⋊C2 200
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Inductive Approach

Want an algorithm to list the L with a given Galois group.

Solution for tame case
Lift irreducible polynomials from residue field for unramified,
then adjoin nth roots of p · u.

Thus, it suffices to solve:

Problem
Fix a Galois extension L/K, set H = Gal(L/K) and suppose G
is an extension of H:

1→ A→ G → H → 1,

with A � Fk
p. Find all M/L s.t. M/K Galois and Gal(M/K) � G.
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Interlude: Local Class Field Theory
Let M/L/Qp with [M : L] = m and Γ = Gal(M/L).

Theorem (Local Class Field Theory [8, Part IV])
H2(Γ,M×) = ⟨uM/L⟩ � 1

mZ/Z

–∪ uM/L : Γab = Ĥ−2(Γ,Z) ∼−→ Ĥ0
(Γ,M×) = L×/NmM/L M×.

The map M 7→ NmM/L M× gives a bijection between
abelian extensions M/L and finite index subgroups of L×.

Monge [5] gives algorithms for finding a defining polynomial of
the extension associated to a given norm subgroup.

Upshot
Since A = Fk

p abelian, can use LCFT to find possible M/L in
terms of subgroups of L×.
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A Mod-p Representation

Given
1→ A→ G → H → 1

and L/K, let V = (1 + PL)/(1 + PL)
p, an Fp[H]-module.

Since A = Gal(M/L) has exponent p, it corresponds to a
subgp N ⊇ (1 + PL)

p and L×/N � (1 + PL)/(N ∩ (1 + PL)).
Let W = (N ∩ (1 + PL))/(1 + PL)

p, a subspace of V.
M/K is Galois iff W is stable under H = Gal(L/K).
The MeatAxe algorithm finds such subrepresentations.
For each W, check V/W � A as Fp[H]-modules.
Given W, easy to find a list of N.
The corresponding M/K are candidates for Gal(M/K) � G.
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Extension Classes

There may be multiple extensions

1→ A→ G′ → H → 1

yielding the same action of H on A. Use group cohomology to
distinguish them.

Choosing a section s : H → G′, define a 2-cocycle by
(g, h) 7→ s(g)s(h)s(gh)−1 ∈ A.
Get bijection H2(H, A)↔ {1→ A→ G′ → H → 1}/∼.

Two approaches to picking out G:
1 Try to find the extension class, given W,
2 Use W to attempt to construct an action of G on M, failing

if extension class wrong.
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A Theorem of Shafarevich and Weil

Theorem ([1, Ch. 14, Thm. 6])
Let N ⊂ L× correspond to M/L under LCFT and set
G = Gal(M/K), H = Gal(L/K) and A = Gal(M/L).
Then the image of uL/K under the natural map

H2(H, L×)→ H2(H, L×/N) � H2(H, A)

is the extension class for

1→ Gal(M/L)→ Gal(M/K)→ Gal(L/K)→ 1.

We can compute a 2-cocycle representing uL/K and use it for
each W.
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Summary of Algorithm

Data: G ⊵ G0 ⊵ G1 ⊵ G2 ⊵ · · · ⊵ Gr = 1
Result: List of all Galois F/Qp with Gal(F/Qp) � G
Find tame extensions L1/Qp with Gal(L1/Qp) � G/G1;
for 0 < i < r do

Find class σi of 1→ Gi/Gi+1 → G/Gi+1 → G/Gi → 1;
for each L = Li do

Compute a 2-cocycle representing uL/Qp ;
Find all stable submodules W with L×/W � Gi/Gi+1;
for each W do

if uL/Qp 7→ σi ∈ H2(L/Qp, L×/W) then
Add the M/L matching W to the list of Li+1;

end
end

end
end
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Tori over R

Definition
An algebraic torus over a field K is a group scheme,
isomorphic to (Gm)

n after tensoring with a finite extension.

We use tori over R as an example, since classification is easy:
U, with U(R) = {z ∈ C× : zz̄ = 1},
Gm, with Gm(R) = R

×,
S, with S(R) = C×.

Theorem (c.f. [2, Thm 2])
Every algebraic torus over R is a product of these tori.

Over Qp, different field extensions help create a much wider
variety of tori.
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Character lattices

Definition
The character lattice of T is X∗(T ) = HomK̄(T,Gm),

X∗(T ) is a free rank-n Z-module with a Gal(K̄/K) action.
Can take {χi : (z1, . . . , zn) 7→ zi} as a basis for X∗(Gn

m).
X∗(Gm) = Z with trivial action,
X∗(U) = Z with conjugation acting as x 7→ −x,
X∗(S) = Zv ⊕ Zw with conjugation exchanging v and w.

Theorem
The functor T 7→ X∗(T ) defines a contravariant equivalence of
categories K-Tori→ Gal(K̄/K)-Lattices.
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Finding p-adic tori

Goal
Create a database of algebraic tori over p-adic fields.

We can break up the task of finding tori into two pieces:
1 For each dimension n, list all finite groups G that act

(faithfully) on Zn. For fixed n, the set of G is finite.
2 For each G and p, list all Galois extensions L/Qp with

Gal(L/Qp) � G. For fixed G and p, the set of L is finite.
Moreover, when p does not divide |G|, this question is easy.
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Finite Subgroups of GLn(Z)

With a choice of basis, a faithful action of G on Zn is the
same as an embedding G ⊂ GLn(Z).
Two G-lattices are isomorphic if and only if the
corresponding subgroups are conjugate within GLn(Z).
Two G-lattices are isogenous if the corresponding
subgroups are conjugate within GLn(Q).

Gm × U and S are isogenous but not isomorphic, since ( 1 0
0 −1 )

and ( 0 1
1 0 ) are conjugate in GLn(Q) but not in GLn(Z).
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Previous Computations

CARAT [3]
Up to dimension 6, the software package CARAT lists all of the
finite subgroups of GLn(Z), up to Z- and Q-conjugacy.

IMF GAP Library [6]
The group theory software package GAP has a library for
maximal finite subgroups where the corresponding lattice is
irreducible as a G-module. The Q-classes are known for n ≤ 31,
the Z-classes for n ≤ 11 and n ∈ {13, 17, 19, 23}.
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Indecomposible subgroups

A G-lattice is indecomposible if it does not split as a direct
sum of G-submodules.
For example, X∗(S) is not irreducible, since ⟨v + w⟩ is a
stable submodule, as is ⟨v − w⟩.
But it is indecomposible; the sum of these submodules
has index 2.

For n > 6, work remains to recover a list of indecomposible
subgroups. Note that the decomposition into indecomposible
submodules is NOT unique.
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Number of Subgroups (up to GLn(Z)-conjugacy)

Dimension 1 2 3 4 5 6

Real 2 4 6 9 12 16
Unramified 2 7 16 45 96 240
Tame 2 13 51 298 1300 6661
7-adic 2 10 38 192 802 3767
5-adic 2 11 41 222 890 4286
3-adic 2 13 51 348 1572 9593
2-adic 2 11 60 536 4820 65823
Local 2 13 67 633 5260 69584
All 2 13 73 710 6079 85308

Note that each subgroup corresponds to multiple tori, since
there are multiple field extensions with that Galois group.
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Order of Largest Subgroup

Dimension 1 2 3 4 5 6

Real 2 2 2 2 2 2
Unramified 2 6 6 12 12 30
Tame 2 12 12 40 72 144
7-adic 2 8 12 40 40 120
5-adic 2 12 12 40 72 144
3-adic 2 12 12 72 72 432
2-adic 2 12 48 576 1152 2304
Irreducible 2 12 48 1152 3840 103680
Weyl A1 G2 B3 F4 B5 2 × E6

Dim Largest Irreducible Subgroup
7 2903040 (E7)
8 696729600 (E8)
31 17658411549989416133671730836395786240000000 (B31)
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Database of p-adic Fields

Jones and Roberts [4] have created a database of p-adic fields.

Lists all L/Qp with a given degree, including non-Galois;
Includes up to degree 10;
Gives Galois group and other data about the extension;
Biggest table is [L : Q2] = 8, of which there are 1823.
I want G in degree up to 96 (tame) or 14, 60, 144, 144 (wild,
p = 7, 5, 3, 2 resp.)

Their database solves the problem for small G, but most of the
target G fall outside it.
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Future Work

1 Flesh out details of algorithm and implement it,
2 Extend group theoretic analysis to dimension 7 and 8,
3 Compute additional data for each torus: cohomology

groups, embeddings into induced tori, Moy-Prasad
filtrations, conductors, component groups of Néron
models...

4 Put data online at www.lmfdb.org.

www.lmfdb.org
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Thank you for your attention!
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