Enumeration Problem

The inverse Galois problem for p-adic fields

David Roe

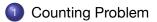
Department of Mathematics University of Pittsburgh

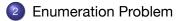
November 13, 2017

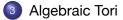
Counting Problem

Enumeration Problem

Algebraic Tori







Counting Problem	
0000000	

Inverse Galois Problem

- Classic Problem: determine if a finite *G* is a Galois group.
- Depends on base field: every G is a Galois group over $\mathbb{C}(t)$.
- Most work focused on L/Q: S_n and A_n, every solvable group, every sporadic group except possibly M₂₃,...
- Generic polynomials $f_G(t_1, \ldots, t_r, X)$ are known for some (G, K): every L/K with group G is a specialization.

Computational Problems

Given a finite group G, find algorithms for

- Existence problem: exist L/\mathbb{Q}_p with $Gal(L/\mathbb{Q}_p) \cong G$?
- 2 Counting problem: how many such *L* exist (always finite)?
- Senumeration problem: list the *L*.

Extensions of *p*-adic fields

If L/K is an extension of *p*-adic fields, it decomposes:

 $\begin{array}{c}
L \\
| wild \\
L_t \\
| tame \\
L_u \\
| unram \\
K
\end{array}$

- Wild totally ramified, degree a power of *p*.
- Tame totally ramified, degree relatively prime to *p*. Have L_t = L_u(^{*}√π) for some uniformizer π ∈ L_u.
- Unramified there is a unique unramified extension of each degree: equivalence of categories with extensions of the residue field.

Filtrations of *p*-adic Galois groups

The splitting of L/K into unramified, tame and wild pieces induces a filtration on Gal(L/K). We can refine this filtration to

 $G \trianglerighteq G_0 \trianglerighteq G_1 \trianglerighteq G_2 \trianglerighteq \cdots \trianglerighteq G_r = 1.$

- For every $i, G_i \trianglelefteq G$;
- $G/G_0 = \langle \sigma \rangle$ is cyclic, and $L^{G_0} = L_u$;
- $G_0/G_1 = \langle \tau \rangle$ is cyclic, order prime to p and $\sigma^{-1}\tau \sigma = \tau^q$;
- For 0 < i < r, $G_i/G_{i+1} \cong \mathbb{F}_p^{k_i}$.

Necessary condition: G must be solvable with such a filtration.

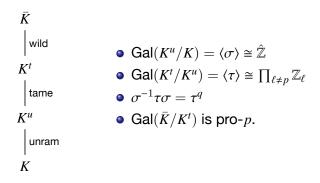
Counting Problem

Enumeration Problem

Algebraic Tori

Absolute Galois groups

In the projective limit, get a tower of infinite extensions:



Presentation of the absolute Galois group

For p > 2, $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is the profinite group generated by σ, τ, x_0, x_1 with x_0, x_1 pro-*p* and the following relations (see [7])

Counting algorithm

The number of extensions L/\mathbb{Q}_p with $\operatorname{Gal}(L/\mathbb{Q}_p) \cong G$ is

$$\frac{1}{\#\operatorname{Aut}(G)} \# \left\{ \varphi : \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbb{Q}_p) \twoheadrightarrow G \right\}$$

So it suffices to count the tuples $\sigma, \tau, x_0, x_1 \in G$ that

- satisfy the relations from $Gal(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$,
- generate G.

Overall Strategy

Loop over σ generating the unramified quotient and τ generating the tame inertia (with $\tau^{\sigma} = \tau^{p}$). For each such (σ, τ) up to automorphism, count the valid x_0, x_1 .

Counting x_0, x_1

- The hard relation has x_0 in LHS only, x_1 in RHS only.
- If we didn't have to worry about (σ, τ, x₀, x₁) generating, could count collisions: for each y in the *p*-core, the product of the number of ways it can be represented as LHS with the number as RHS.
- Can make this work when the *p*-core is multiplicity free as a representation of the tame quotient, using a lemma on generating sets for *p*-groups.
- Naive looping faster for small G.

Counting Problem	
0000000	

Enumeration Problem

Algebraic Tori

Conclusions

Assume p > 2. Call a group *potentially p*-adic if

- it has a valid filtration,
- In the case that the order is a power of p, it has one or two generators.

Notable Examples ($p = 3$)					
Label	Description	Num			
36G7	$(C_3 \times C_3) \rtimes C_4$	0			
54G6	$(C_9 \rtimes C_3) \rtimes C_2$	49			
54G14	$(C_3 \times C_3 \times C_3) \rtimes C_2$	0			
54G15	$C_6 imes C_3 imes C_3$	0			
72G33	$(C_{12} \times C_3) \rtimes C_2$	0			
18T89	$(C_3 \times ((C_3 \times C_3) \rtimes C_3)) \rtimes C_2$	0			
18T128	$(C_3 \times C_3 \times C_3 \times C_3) \rtimes C_4$	0			
18T138	$((C_3 \times C_3) \rtimes C_2) \times ((C_3 \times C_3) \rtimes C_2)$	0			
15T64	$(C_3 \times (((C_3 \times C_3 \times C_3 \times C_3) \rtimes C_5) \rtimes C_4)) \rtimes C_2$	200			

Inductive Approach

Want an algorithm to list the *L* with a given Galois group.

Solution for tame case

Lift irreducible polynomials from residue field for unramified, then adjoin n^{th} roots of $p \cdot u$.

Thus, it suffices to solve:

Problem

Fix a Galois extension L/K, set H = Gal(L/K) and suppose *G* is an extension of *H*:

$$1 \to A \to G \to H \to 1,$$

with $A \cong \mathbb{F}_p^k$. Find all M/L s.t. M/K Galois and $\operatorname{Gal}(M/K) \cong G$.

Interlude: Local Class Field Theory

Let
$$M/L/\mathbb{Q}_p$$
 with $[M:L] = m$ and $\Gamma = \text{Gal}(M/L)$.

Theorem (Local Class Field Theory [8, Part IV])

•
$$\mathsf{H}^2(\Gamma, M^{\times}) = \langle u_{M/L} \rangle \cong \frac{1}{m} \mathbb{Z}/\mathbb{Z}$$

- $\cup u_{M/L} : \Gamma^{\mathsf{ab}} = \widehat{\mathsf{H}}^{-2}(\Gamma, \mathbb{Z}) \xrightarrow{\sim} \widehat{\mathsf{H}}^{0}(\Gamma, M^{\times}) = L^{\times} / \operatorname{Nm}_{M/L} M^{\times}.$
- The map M → Nm_{M/L} M[×] gives a bijection between abelian extensions M/L and finite index subgroups of L[×].

Monge [5] gives algorithms for finding a defining polynomial of the extension associated to a given norm subgroup.

Upshot

Since $A = \mathbb{F}_p^k$ abelian, can use LCFT to find possible M/L in terms of subgroups of L^{\times} .

A Mod-*p* Representation

Given

$$1 \to A \to G \to H \to 1$$

and L/K, let $V = (1 + \mathcal{P}_L)/(1 + \mathcal{P}_L)^p$, an $\mathbb{F}_p[H]$ -module.

- Since A = Gal(M/L) has exponent p, it corresponds to a subgp N ⊇ (1 + P_L)^p and L[×]/N ≅ (1 + P_L)/(N ∩ (1 + P_L)).
- Let $W = (N \cap (1 + \mathcal{P}_L))/(1 + \mathcal{P}_L)^p$, a subspace of V.
- M/K is Galois iff W is stable under H = Gal(L/K).
- The MeatAxe algorithm finds such subrepresentations.
- For each W, check $V/W \cong A$ as $\mathbb{F}_p[H]$ -modules.
- Given *W*, easy to find a list of *N*.
- The corresponding M/K are candidates for $Gal(M/K) \cong G$.

Extension Classes

There may be multiple extensions

```
1 \to A \to G' \to H \to 1
```

yielding the same action of H on A. Use group cohomology to distinguish them.

- Choosing a section $s: H \to G'$, define a 2-cocycle by $(g,h) \mapsto s(g)s(h)s(gh)^{-1} \in A$.
- Get bijection $H^2(H, A) \leftrightarrow \{1 \to A \to G' \to H \to 1\}/\sim$.

Two approaches to picking out G:

- Try to find the extension class, given W,
- Use W to attempt to construct an action of G on M, failing if extension class wrong.

A Theorem of Shafarevich and Weil

Theorem ([1, Ch. 14, Thm. 6])

Let $N \subset L^{\times}$ correspond to M/L under LCFT and set G = Gal(M/K), H = Gal(L/K) and A = Gal(M/L). Then the image of $u_{L/K}$ under the natural map

$$\mathsf{H}^2(H,L^{\times}) \to \mathsf{H}^2(H,L^{\times}/N) \cong \mathsf{H}^2(H,A)$$

is the extension class for

 $1 \rightarrow \operatorname{Gal}(M/L) \rightarrow \operatorname{Gal}(M/K) \rightarrow \operatorname{Gal}(L/K) \rightarrow 1.$

We can compute a 2-cocycle representing $u_{L/K}$ and use it for each *W*.

```
Counting Problem
```

Algebraic Tori

Summary of Algorithm

```
Data: G \succeq G_0 \trianglerighteq G_1 \trianglerighteq G_2 \trianglerighteq \cdots \trianglerighteq G_r = 1
Result: List of all Galois F/\mathbb{Q}_p with Gal(F/\mathbb{Q}_p) \cong G
Find tame extensions L_1/\mathbb{Q}_p with \text{Gal}(L_1/\mathbb{Q}_p) \cong G/G_1;
for 0 < i < r do
     Find class \sigma_i of 1 \rightarrow G_i/G_{i+1} \rightarrow G/G_{i+1} \rightarrow G/G_i \rightarrow 1;
     for each L = L_i do
           Compute a 2-cocycle representing u_{L/\mathbb{Q}_n};
           Find all stable submodules W with L^{\times}/W \cong G_i/G_{i+1};
           for each W do
                if u_{L/\mathbb{Q}_p} \mapsto \sigma_i \in \mathsf{H}^2(L/\mathbb{Q}_p, L^{\times}/W) then
                     Add the M/L matching W to the list of L_{i+1};
                end
           end
     end
end
```

Tori over \mathbb{R}

Definition

An *algebraic torus* over a field *K* is a group scheme, isomorphic to $(\mathbb{G}_m)^n$ after tensoring with a finite extension.

We use tori over \mathbb{R} as an example, since classification is easy:

• **U**, with $\mathbf{U}(\mathbb{R}) = \{z \in \mathbb{C}^{\times} : z\overline{z} = 1\},\$

•
$$\mathbb{G}_m$$
, with $\mathbb{G}_m(\mathbb{R}) = \mathbb{R}^{\times}$,

• **S**, with
$$\mathbf{S}(\mathbb{R}) = \mathbb{C}^{\times}$$
.

Theorem (c.f. [2, Thm 2])

Every algebraic torus over \mathbb{R} is a product of these tori.

Over \mathbb{Q}_p , different field extensions help create a much wider variety of tori.

Enumeration Problem

Character lattices

Definition

The character lattice of T is $X^*(T) = \text{Hom}_{\bar{K}}(T, \mathbb{G}_m)$,

 $X^*(T)$ is a free rank-*n* \mathbb{Z} -module with a Gal (\overline{K}/K) action. Can take $\{\chi_i : (z_1, \ldots, z_n) \mapsto z_i\}$ as a basis for $X^*(\mathbb{G}_m^n)$.

- $X^*(\mathbb{G}_m) = \mathbb{Z}$ with trivial action,
- $X^*(\mathbf{U}) = \mathbb{Z}$ with conjugation acting as $x \mapsto -x$,
- $X^*(\mathbf{S}) = \mathbb{Z}v \oplus \mathbb{Z}w$ with conjugation exchanging v and w.

Theorem

The functor $T \mapsto X^*(T)$ defines a contravariant equivalence of categories K-**Tori** \rightarrow Gal (\bar{K}/K) -Lattices.

Counting Problem

Enumeration Problem

Algebraic Tori

Finding *p*-adic tori

Goal

Create a database of algebraic tori over *p*-adic fields.

We can break up the task of finding tori into two pieces:

- For each dimension *n*, list all finite groups *G* that act (faithfully) on Zⁿ. For fixed *n*, the set of *G* is finite.
- Por each *G* and *p*, list all Galois extensions *L*/Q_p with Gal(*L*/Q_p) ≅ *G*. For fixed *G* and *p*, the set of *L* is finite. Moreover, when *p* does not divide |*G*|, this question is easy.

Finite Subgroups of $GL_n(\mathbb{Z})$

- With a choice of basis, a faithful action of *G* on Zⁿ is the same as an embedding *G* ⊂ GL_n(Z).
- Two *G*-lattices are isomorphic if and only if the corresponding subgroups are conjugate within GL_n(Z).
- Two *G*-lattices are *isogenous* if the corresponding subgroups are conjugate within GL_n(Q).

 $\mathbb{G}_m \times \mathbf{U}$ and \mathbf{S} are isogenous but not isomorphic, since $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are conjugate in $\mathrm{GL}_n(\mathbb{Q})$ but not in $\mathrm{GL}_n(\mathbb{Z})$.

Previous Computations

CARAT [3]

Up to dimension 6, the software package CARAT lists all of the finite subgroups of $GL_n(\mathbb{Z})$, up to \mathbb{Z} - and \mathbb{Q} -conjugacy.

IMF GAP Library [6]

The group theory software package GAP has a library for maximal finite subgroups where the corresponding lattice is irreducible as a *G*-module. The \mathbb{Q} -classes are known for $n \leq 31$, the \mathbb{Z} -classes for $n \leq 11$ and $n \in \{13, 17, 19, 23\}$.

Indecomposible subgroups

- A *G*-lattice is *indecomposible* if it does not split as a direct sum of *G*-submodules.
- For example, X^{*}(S) is not irreducible, since ⟨v + w⟩ is a stable submodule, as is ⟨v − w⟩.
- But it is indecomposible; the sum of these submodules has index 2.

For n > 6, work remains to recover a list of indecomposible subgroups. Note that the decomposition into indecomposible submodules is NOT unique.

Counting	Problem
000000	00

Number of Subgroups (up to $GL_n(\mathbb{Z})$ -conjugacy)

Dimension	1	2	3	4	5	6
Real	2	4	6	9	12	16
Unramified	2	7	16	45	96	240
Tame	2	13	51	298	1300	6661
7-adic	2	10	38	192	802	3767
5-adic	2	11	41	222	890	4286
3-adic	2	13	51	348	1572	9593
2-adic	2	11	60	536	4820	65823
Local	2	13	67	633	5260	69584
All	2	13	73	710	6079	85308

Note that each subgroup corresponds to multiple tori, since there are multiple field extensions with that Galois group.

Order of Largest Subgroup

Dimension	1	2	3	4	5	6
Real	2	2	2	2	2	2
Unramified	2	6	6	12	12	30
Tame	2	12	12	40	72	144
7-adic	2	8	12	40	40	120
5-adic	2	12	12	40	72	144
3-adic	2	12	12	72	72	432
2-adic	2	12	48	576	1152	2304
Irreducible	2	12	48	1152	3840	103680
Weyl	A_1	G_2	B_3	F_4	B_5	$2 \times E_6$

Dim	Largest Irreducible Subgroup
7	2903040 (E ₇)
8	696729600 (<i>E</i> ₈)
31	$17658411549989416133671730836395786240000000 (B_{31})$

Database of *p*-adic Fields

Jones and Roberts [4] have created a database of *p*-adic fields.

- Lists all L/\mathbb{Q}_p with a given degree, including non-Galois;
- Includes up to degree 10;
- Gives Galois group and other data about the extension;
- Biggest table is $[L : \mathbb{Q}_2] = 8$, of which there are 1823.
- I want G in degree up to 96 (tame) or 14, 60, 144, 144 (wild, p = 7, 5, 3, 2 resp.)

Their database solves the problem for small G, but most of the target G fall outside it.

Future Work

- Flesh out details of algorithm and implement it,
- Extend group theoretic analysis to dimension 7 and 8,
- Compute additional data for each torus: cohomology groups, embeddings into induced tori, Moy-Prasad filtrations, conductors, component groups of Néron models...
- Out data online at www.lmfdb.org.

Thank you for your attention!

References

- [1] E. Artin, J. Tate. Class Field Theory. W.A. Benjamin, 1968.
- [2] B. Casselman. *Computations in real tori*, Representation theory of real groups, Contemporary Mathematics **472**, A.M.S. (2007).
- [3] C. Cid, J. Opgenorth, W. Plesken, T. Schulz. *CARAT*. wwwb.math.rwth-aachen.de/carat/.
- [4] J. Jones, D. Roberts. A database of local fields, J. Symbolic Comput 41 (2006), 80-97.
- [5] M. Monge. A family of Eisenstein polynomials generating totally ramified extensions, identification of extensions and construction of class fields, Int. J. Number Theory **10** (2014), 1699-1727.
- [6] G. Nebe, W. Pleskin, M. Pohst, B. Souvignier. *Irreducible maximal finite integral matrix groups*. GAP Library.
- [7] J. Neukirch, A. Schmidt, K. Wingberg. *Cohomology of Number Fields*. Springer, Berlin, 2015.
- [8] J.-P. Serre. Local fields. Springer, New York, 1979.