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Inverse Galois Problem

@ Classic Problem: determine if a finite G is a Galois group.
@ Depends on base field: every G is a Galois group over C(t).

@ Most work focused on L/Q: S, and A,, every solvable
group, every sporadic group except possibly Mg, ...

@ Generic polynomials f;(t1,...,t,, X) are known for some
(G,K): every L/K with group G is a specialization.

Computational Problems

Given a finite group G, find algorithms for
@ Existence problem: exist L/Q, with Gal(L/Q,) = G?
© Counting problem: how many such L exist (always finite)?
© Enumeration problem: list the L.
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Extensions of p-adic fields

If L/K is an extension of p-adic fields, it decomposes:

L @ Wild - totally ramified, degree a power of p.
wild @ Tame - totally ramified, degree relatively
L prime to p. Have L, = L,(+/r) for some

uniformizer = € L,.

t
ame @ Unramified - there is a unique unramified
L, extension of each degree: equivalence of
unram categories with extensions of the residue
field.



Counting Problem
00®@00000

Filtrations of p-adic Galois groups

The splitting of L/K into unramified, tame and wild pieces
induces a filtration on Gal(L/K). We can refine this filtration to

G>Go>2Gi 2G> -G, = 1.

@ For every i, G; < G;

@ G/Gy = (o) is cyclic, and L6 = L,;

@ Gy/G1 = (1) is cyclic, order prime to p and o' = 74,
@ For0<i<r,Gi/Gi1 =Fy.

Necessary condition: G must be solvable with such a filtration.
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Absolute Galois groups

In the projective limit, get a tower of infinite extensions:

K
wild .
o Gal(K“/K) = (o) =2
K o Gal(K'/K") = (1) = [Tps) Zt
tame @ o lro =14
K" e Gal(K/K") is pro-p.
unram
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Presentation of the absolute Galois group

For p > 2, Gal(Q,/Q,) is the profinite group generated by
o, T, Xo, X1 With xg, x; pro-p and the following relations (see [7])

p+1 (p-1)/2

-1 0 T p+1\9272
<X0,T> XE) = x[1)|ix17x12 {xla Ty }

(p+1)/2, _(p+1)/2
—1)/2)9272 +75
{{Xl,Tngl},O'QTgp )/ }

h € Z, with mult. order p—1, proj,:Z— Z,
(x0,T) := (xoTxgp_Q‘r ... xgr)projp /(p-1)
B:Gal(Q,/Q) ~Z  )=h pr)=1
{X’P} = (-xﬁ(l)pQ.X’B(p)p2 .. .X’B(‘Dpi2)p2)projp /(p-1)

09 1= projy (o) Ty 1= Projy(7)
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Counting algorithm

The number of extensions L/Q, with Gal(L/Q,) =G is

1

m#{(p : GaI(Qp/Qp) - G}

So it suffices to count the tuples o, 7, xg, x1 € G that
@ satisfy the relations from Gal(Q,/Q,),
© generate G.

Overall Strategy

Loop over o generating the unramified quotient and
generating the tame inertia (with 77 = 7?). For each such (o, 7)
up to automorphism, count the valid xg, x;.
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Counting xg, x;

@ The hard relation has xq in LHS only, x; in RHS only.

@ If we didn’t have to worry about (o, 7, x0, x1) generating,
could count collisions: for each y in the p-core, the
product of the number of ways it can be represented as
LHS with the number as RHS.

@ Can make this work when the p-core is multiplicity free as
a representation of the tame quotient, using a lemma on
generating sets for p-groups.

@ Naive looping faster for small G.
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Conclusions

Assume p > 2. Call a group potentially p-adic if
@ it has a valid filtration,
@ in the case that the order is a power of p, it has one or two

generators.
Notable Examples (p = 3)
Label Description Num
36G7 (Cg X Cg) bl C4 0
54G6 (Cg ~ Cg) > C2 49
54G14 (C3XC3XC3)><C2 0

54G15 Ceg X C3xCs 0
72G33 (C12 X Cg) < Co 0
18T89  (C3 x ((C3x C3) = C3)) » Ca 0
18T128 (C3x C3xC3xC3)=Cy 0
187138 ((CgXCg)NCQ) X((C3XC3)><C2) 0
15T64 (C3><(((C3XC3XC3XC3)><C5)><C4>)><C2 2
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Inductive Approach

Want an algorithm to list the L with a given Galois group.

Solution for tame case

Lift irreducible polynomials from residue field for unramified,
then adjoin n'" roots of p - u.

Thus, it suffices to solve:

Problem

Fix a Galois extension L/K, set H = Gal(L/K) and suppose G
is an extension of H:

1-A—>G—->H->1,

with A = F’;, Find all M/L s.t. M/K Galois and Gal(M/K) = G.

v
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Interlude: Local Class Field Theory
Let M/L/Q, with [M : L] =mand I" = Gal(M/L).

Theorem (Local Class Field Theory [8, Part 1V])
o H2(L, M¥) = (upy) = 17/2

o _UMM/L : Fab = |:|_2(F,Z) - HO(F,MX) = LX/NmM/LMX.
@ The map M — Nm,,,;, M* gives a bijection between
abelian extensions M /L and finite index subgroups of L*.

Monge [5] gives algorithms for finding a defining polynomial of
the extension associated to a given norm subgroup.

Since A = Fj‘, abelian, can use LCFT to find possible M/L in
terms of subgroups of L*.
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A Mod-p Representation

Given
1-A-G—-H-1
and L/K,letV = (1+%.)/(1+P)?, an F,[H|-module.

@ Since A = Gal(M/L) has exponent p, it corresponds to a
subgp N2 (1+®.)? and L*/N = (1 +P) /(NN (1 +Pp)).

o letW=(Nn(1+%1))/(1+PL)?, asubspace of V.

@ M/K is Galois iff W is stable under H = Gal(L/K).

@ The MeatAxe algorithm finds such subrepresentations.

@ For each W, check V/W = A as F,[H|-modules.

@ Given W, easy to find a list of N.

@ The corresponding M/K are candidates for Gal(M/K) = G.
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Extension Classes

There may be multiple extensions
15A->G -H->1

yielding the same action of H on A. Use group cohomology to
distinguish them.

@ Choosing a section s : H — G’, define a 2-cocycle by
(g.h) = s(g)s(h)s(gh)™" € A.
@ Get bijection H2(H,A) o{l>A>G - H-1}/~.

Two approaches to picking out G:
@ Try to find the extension class, given W,

© Use W to attempt to construct an action of G on M, failing
if extension class wrong.
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A Theorem of Shafarevich and Weil

Theorem ([1, Ch. 14, Thm. 6])

Let N c L* correspond to M /L under LCFT and set
G = Gal(M/K), H= Gal(L/K) and A = Gal(M/L).
Then the image of u; ;x under the natural map

H?(H,L*) - H*(H,L*/N) = H*(H, A)
is the extension class for

1 - Gal(M/L) - Gal(M/K) — Gal(L/K) — 1.

We can compute a 2-cocycle representing u; /¢ and use it for
each W.
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Summary of Algorithm

Data: G>Gy>G1>2Go > -G, =1
Result: List of all Galois F/Q,, with Gal(F/Q,) = G
Find tame extensions L,/Q, with Gal(L,/Q,) = G/G;
forO<i<rdo
Find class o; of 1 — G;/Giy1 —» G/Git1 — G/G; — 1;
foreach L =L; do
Compute a 2-cocycle representing u.q,;
Find all stable submodules W with L*/W = G;/G41;
for each W do
if u g, — o € H*(L/Q,.L*/W) then
| Add the M/L matching W to the list of L, ;
end
end
end
end
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Tori over R

Definition

An algebraic torus over a field K is a group scheme,
isomorphic to (G,,)" after tensoring with a finite extension.

We use tori over R as an example, since classification is easy:
@ U withUR)={zeC* : zz=1},
@ Gy, with G,,(R) = R*,
@ S, with S(R) = C*.

Theorem (c.f. [2, Thm 2])
Every algebraic torus over R is a product of these tori.

Over Q,, different field extensions help create a much wider
variety of tori.
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Character lattices

Definition
The character lattice of T is X*(T) = Homg(T,G,,),

X*(T) is a free rank-n Z-module with a Gal(K/K) action.
Can take {x; : (z1,...,2s) = z;} as a basis for X*(G,).

@ X*(G,,) = Z with trivial action,
@ X*(U) = Z with conjugation acting as x — —x,
@ X*(S) = Zv & Zw with conjugation exchanging v and w.

The functor T — X*(T) defines a contravariant equivalence of
categories K- Tori — Gal(K /K)- Lattices.
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Finding p-adic tori

Create a database of algebraic tori over p-adic fields.

We can break up the task of finding tori into two pieces:

@ For each dimension #, list all finite groups G that act
(faithfully) on Z". For fixed n, the set of G is finite.

@ For each G and p, list all Galois extensions L/Q, with
Gal(L/Q,) = G. For fixed G and p, the set of L is finite.
Moreover, when p does not divide |G|, this question is easy.
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Finite Subgroups of GL,(Z)

@ With a choice of basis, a faithful action of G on Z" is the
same as an embedding G c GL,(Z).

@ Two G-lattices are isomorphic if and only if the
corresponding subgroups are conjugate within GL,(Z).

@ Two G-lattices are isogenous if the corresponding
subgroups are conjugate within GL,(Q).

G, x U and S are isogenous but not isomorphic, since ([1) )
and (9 }) are conjugate in GL,(Q) but not in GL,(Z).
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Previous Computations

CARAT [3]

Up to dimension 6, the software package CARAT lists all of the
finite subgroups of GL,(Z), up to Z- and Q-conjugacy.

IMF GAP Library [6]

The group theory software package GAP has a library for
maximal finite subgroups where the corresponding lattice is
irreducible as a G-module. The Q-classes are known for n < 31,
the Z-classes forn <11 and n € {13,17, 19, 23}.

| A

v
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Indecomposible subgroups

@ A G-lattice is indecomposible if it does not split as a direct
sum of G-submodules.

@ For example, X*(8) is not irreducible, since (v + w) is a
stable submodule, as is (v — w).

@ But it is indecomposible; the sum of these submodules
has index 2.

For n > 6, work remains to recover a list of indecomposible
subgroups. Note that the decomposition into indecomposible
submodules is NOT unique.



Number of Subgroups (up to GL,(Z)-conjugacy)

Dimension |1 2 3 4 5 6
Real 2 4 6 9 12 16
Unramified | 2 7 16 45 96 240
Tame 2 13 51 298 1300 6661
7-adic 2 10 38 192 802 3767
5-adic 2 11 41 222 890 4286
3-adic 2 13 51 348 1572 9593
2-adic 2 11 60 536 4820 65823
Local 2 13 67 633 5260 69584
All 2 13 73 710 6079 85308

Algebraic Tori
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Note that each subgroup corresponds to multiple tori, since

there are multiple field extensions with that Galois group.



Order of Largest Subgroup

Dimension 1 2 3 4 5 6
Real 2 2 2 2 2 2
Unramified 2 6 6 12 12 30
Tame 2 12 12 40 72 144
7-adic 2 8 12 40 40 120
5-adic 2 12 12 40 72 144
3-adic 2 12 12 72 72 432
2-adic 2 12 48 576 1152 2304
Irreducible 2 12 48 1152 3840 103680
Weyl A1 Go Bs F, B 2 X Eg

Dim | Largest Irreducible Subgroup

Algebraic Tori
000000080

7 2903040 (E7)

8 | 696729600 (Es)
31 | 17658411549989416133671730836395786240000000 (Bs1)
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Database of p-adic Fields

Jones and Roberts [4] have created a database of p-adic fields.

@ Lists all L/Q, with a given degree, including non-Galois;
@ Includes up to degree 10;

@ Gives Galois group and other data about the extension;
@ Biggest table is [L : Q2] = 8, of which there are 1823.

@ | want G in degree up to 96 (tame) or 14, 60, 144, 144 (wild,
p="15,3,2resp.)

Their database solves the problem for small G, but most of the
target G fall outside it.



Future Work

Future Work

Flesh out details of algorithm and implement it,
Extend group theoretic analysis to dimension 7 and 8,

000

Compute additional data for each torus: cohomology
groups, embeddings into induced tori, Moy-Prasad
filtrations, conductors, component groups of Néron
models...

© Put data online at www.1mfdb.org.


www.lmfdb.org

Thanks

Thank you for your attention!
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