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Non-archimedian local fields

Let K be a finite extension of Qp or k((t)) for some finite field k .
Let v be the valuation, v(π) = 1 and OK = {x ∈ K : v(x) ≥ 0}.
Let R be a dense subring of K , e.g. Z[1

p ] or k [t , t−1].

We seek to compute with algebraic structures over K :
K n – vectors of dimension n over K ,

Mn(K ) – n × n matrices over K ,
K [x ] – polynomials over K ,

K~x� – power series over K ,
as well as geometric ones, like points on varieties over K .

We must perform computational tasks quickly and stably,
and need to determine the precision of the result.
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Precision for numbers

A number pau + O(pN) has absolute precision N and
relative precision N − a,
analogous to the distinction between fixed point and
floating point precision over R.
Over R, precision is not normally tracked using intervals;
over Qp it is common to track precision on each operation.

(
pau + O(pN)

)
+

(
pbv + O(pM)

)
= pau + pbv + O(pmin(N ,M))(

pau + O(pN)
)
·
(
pbv + O(pM)

)
= pa+b

(
uv + O(pmin(N−a,M−b))

)
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Precision loss in basic arithmetic

Precision loss occurs when addition and multiplication are
mixed for elements with different valuations. For example, for
odd p

((
1 + p99 + O(p100)

)
+

(
−1 + p99 + O(p100)

))
p99 + O(p1000)

= 2 + O(p).

Unfortunately, mixing addition and multiplication is necessary
for solving most problems.
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Precision for compound structures

Basic implementations of vectors, matrices, polynomials and
power series use a list of entries, each with its own precision.
I advocate a different representation. For example, for vectors:

Separate precision from approximation

A vector v ∈ K n is represented as pair (ṽ ,P), where ṽ ∈ Rn and
P ⊂ K n is an OK -submodule so that v = ṽ + h for some h ∈ P.
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Karatsuba

Consider the Karatsuba algorithm for multiplying polynomials.
Given input polynomials of degree 2n

F = F0 + xnF1

G = G0 + xnG1,

we set

H0 = F0 ·G0

H2 = F1 ·G1

H1 = (F0 + F1) · (G0 + G1) − H0 − H2.

Then
F ·G = H0 + H1xn + H2x2n

but we have only used three polynomial multiplications of
degree n rather than four, at the cost of two additions.
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Numerical stability

Now suppose F ,G ∈ K [x ] and we track precision for each
operation. For example, if

F = (1 + O(p4)) + (p4 + O(p8)) · x ,

G = (1 + O(p4)) − (p4 + O(p8)) · x ,

we would set

H1 =
(
1 + O(p4) + p4 + O(p8)

) (
1 + O(p4) − p4 −O(p8)

)
−

(
1 + O(p4)

)
+

(
p8 + O(p12)

)
=O(p4).

But the actual coefficient of x in the product has more precision:(
1 + O(p4)

)
·
(
p4 + O(p8)

)
−

(
1 + O(p4)

)
·
(
p4 + O(p8)

)
= O(p8).



Motivation Precision types Working with Precision Numerical Methods

Precision versus speed

We’re thus presented with a choice:
Use faster algorithms, but sacrifice precision on some (or
all) inputs,
Use naive algorithms in order to retain as much precision
as possible, but sacrifice speed, making computations with
large inputs infeasible.
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Why we track precision

Recording the precision at each step of an algorithm imposes
an overhead to computations with p-adics. We track precision
for two main reasons:

As a convenience to the user, so that they know the
accuracy of the output of the algorithm.
So that the algorithm can perform inexact operations (such
as inversion, p-adic logarithms and exponentials) to an
appropriate working precision so that the final answer has
sufficient accuracy.
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Separation

Separate the approximation from the precision
By separating the precision of compound p-adic data types
from the approximation, algorithms can break the dichotomy of
precision vs speed by using fast algorithms to compute an
approximation and computing the precision of the result
separately.

This separation is possible because precision in the
non-archimedian world behaves far better than in archimedian
computations: the ultrametric gives us far better precision
control than the triangle inequality.
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Imprecise elements

An approximate element of K is a pair (a,m), where a ∈ R and
m ∈ Z. We think of (a,m) as representing all possible elements
x ∈ K with v(x − a) ≥ m, and write

a + O(πm).

Geometrically, this approximate element is a ball of radius p−m

around a. While there is no distinguished center of such a ball,
in practice we can fix for each precision m a set of
distinguished elements of R that are inequivalent modulo πm.
For example, if K = Qp and R = Z[1

p ], then we may choose

{a/pn : n ≥ 0 and 0 ≤ a < pm+n}.
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Different precision models

For Zp and Qp, Sage currently supports three different
precision models (capped relative, capped absolute and
fixed modulus). But in reality these different models
correspond more closely to the underlying data structure
rather than the precision tracking, since there’s only one
shape of disc in Qp.
For more complicated structures such as vectors, matrices,
polynomials and power series, there are many different
precision shapes possible. Different precision shapes have
different tradeoffs between speed and accuracy.
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Vector Precision

An element of K n could be represented as
a list of n approximate elements of K (together with the
specification of a distinguished basis),
a ball of radius p−m around an element of Rn,
an element of Rn together with an OK -lattice P ⊂ K n.

Note that the third option generalizes the first two, and that we
can always choose a basis for P consisting of vectors in Rn. In
fact, P is determined exactly, without need for approximation.
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Polynomial Precision

If we fix the degree n then {1, x , . . . , xn} provides a distinguished
basis for the space of polynomials of degree n as a K vector
space. Some additional precision shapes have particular utility
for polynomials:

Newton polygons. If we consider a polynomial as a
function from K to K , then having lots of extra precision in
an “interior” coefficient does not add to the precision of any
evaluation. Moreover, one can determine the Newton
polygon of a product easily from the slopes of the input
polygons, simplifying computation of the precision.
Lagrange precision. We can give the precision of f (ai) for
some fixed set of ai ∈ K .
A mixture, involving the specification of various derivatives
at various points.
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Matrix Precision

Similarly, the space of m × n matrices is isomorphic to K mn, so
precision types for vectors apply to matrices as well. We have
extra precision shapes as well.

If we consider a matrix as representing a linear map
K n → K m then the image vectors will be defined with some
precision lattice in K m. This yields a “column precision” on
our matrix, where each column has the same precision.
Similarly, we can consider a “row precision,” where the
rows of a matrix all have the same precision.
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Power series

The space K~x� is no longer finite dimensional over K , so
additional complications arise: you need to truncate series
both in the x and p “variables.” Precision types similar to
those for finite dimensional vector spaces make sense
however.
Some precision structures for power series may specify an
infinite Newton polygon symbolically. When this Newton
polygon has positive slope in the limit then it allows a
rigorous computation of the precision of power series
evaluation. Information about all coefficients is necessary
in order to ensure convergence, and needs to be stored
separately from the finite list of approximate coefficients. A
precision structure gives a natural place to reason with this
information.
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Precision on varieties

If V is a variety defined over K then points on V are another
type of inexact object we might want to work with. The
Grassmanian G(m,n) of m-dimensional subspaces of K n and
an elliptic curve E defined over K provide illustrative examples.

The Grassmanian G(m,n) is covered by affine charts,
each isomorphic to K m(n−m). To specify a point we need to
specify a chart, and then a point in the relevant vector
space.
An elliptic curve, on the other hand, is usually given as a
subvariety of projective space, and we specify points in
projective space that are supposed to lie on the curve. We
can give the precision of such an approximate point as a
lattice in the tangent space.
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Applying Functions to Precisions

Theorem
Suppose z ∈ K n and f : K n → K m is differentiable at z with
surjective differential dfz . For any OK -submodule P ⊂ K n there
exists r ∈ Z with the following property. If α ∈ K with v(α) > r
then

f (z + αP) = f (z) + α dfz(P).
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Example: Karatsuba

Consider the Karatsuba example: set F̃ = 1 + p4x , G̃ = 1 − p4x
and

f : K 4 → K 3

(a,b, c,d) 7→ (ac,ad + bc,bd).

Its differential at the point z = (1,p4,1,−p4) is given byc 0 a 0
d c b a
0 d 0 b

 =


1 0 1 0
−p4 1 p4 1

0 −p4 0 p4

 .
Let P = 〈(p4,0,0,0), (0,p8,0,0), (0,0,p4,0), (0,0,0,p8)〉.
Then dfz(P) = 〈(p4,−p8,0), (0,p8,−p12), (p4,p8,0), (0,p8,p12)〉.
When p , 2, dfz(P) = 〈(p4,0,0), (0,p8,0), (0,0,p12)〉.
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Example: Determinants

We have

det(A + dA) = det(A) · det(I + A−1 · dA)

= det(A) · (1 + Tr(A−1 · dA))
= det(A) + Tr(Com(A) · dA)

We can therefore compute the determinant of a p-adic matrix
by computing the determinant of an appropriate approximation,
and then computing the precision separately.
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Example: LU Decomposition

We can compute precisions for the LU decomposition similarly.
Let f : Mn×n(K )→ Mn(K ) ×Mn(K ) map A to its LU
decomposition (L,U), normalized so that U is unipotent. Since

A + dA = (L + dL)(U + dU),

we have

L−1 · dA · U−1 = L−1 · dL + dU · U−1 + higher order terms.

Since dL is lower triangular and dU is upper triangular (with
zero diagonal), we can solve for them from dA, L and U.
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Further examples

One can apply similar reasoning to determine precisions for
evaluation of polynomials, Euclidean division, root finding and
factorization, images and kernels, inverse matrices and
characteristic polynomials.
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Implementing Algorithms

1 For a given function f : K n → K m find a method for
determining r from P ⊂ K n.

2 Given an approximate element (x ,P) ∈ K n, compute
dfx(P) (possibly “rounding” back to a lattice of the same
precision type).

3 Compute f (x) using enough fixed-point or floating-point
precision.



Motivation Precision types Working with Precision Numerical Methods

Analogies with R

In searching for algorithms for actually computing f (x), it pays
off to consider the notions of numerical stability used over R.
For example, in computing LU-decompositions, the same
pivoting methods work to reduce precision loss. Unlike R, the
squares in K (analogues of the positive reals) are not closed
under addition, and thus there is no usable notion of positive
definite matrix. This lack hamstrings some of the most useful
algorithms over R, and we are still searching for replacements.
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Characteristic polynomials in Magma

Disclaimer: I develop p-adics in Sage, an open source
competitor to Magma. Moreover, I haven’t run either of the
following experiments personally, but rely on the experience of
Kiran Kedlaya and Justin Walker. I give this example not to
denigrate Magma but to show that handling precision
appropriately is not easy.

Suppose you create a random 50 × 50 matrix A over Zp in
Magma 2.15 and ask for its characteristic polynomial. Even if
the entries of A have precision 100, the resulting polynomial will
have very few digits of precision remaining.
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Characteristic polynomials in Magma

In order to resolve this precision loss, Magma’s characteristic
polynomial algorithm appears to have changed in version 2.18.
While the precision behavior improved dramatically, the runtime
has regressed. In the following timing graph, the horizontal axis
gives the size of the matrix and the vertical axis gives the log of
the time to compute the characteristic polynomial.
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Questions?
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