Greenberg	of Néron
000000	

Applications and Further Work

A function-sheaf dictionary for tori over local fields

David Roe joint with Clifton Cunningham

Department of Mathematics University of Calgary/PIMS

Joint Mathematics Meetings 2014, Baltimore

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Outline

Quasicharacter Sheaves

Applications and Further Work

Introduction	Greenberg of Néron	Quasicharacter Sheaves	Applications and Further Work	References
•00	000000	000000	0000	

Objective

- K a non-archimedean local field,
- **T** an algebraic torus over K,
- ℓ a prime different from p,
- X^* for a group X, notation for Hom $(X, \overline{\mathbb{Q}}_{\ell}^{\times})$.

Goal

Attach a space $\boldsymbol{\tau}$ to $\boldsymbol{\mathsf{T}}$ and find a dictionary that translates

{characters of $\mathbf{T}(K)$ } \leftrightarrow {sheaves on \mathbf{v} }.

- Try to push characters forward along maps such as $\mathbf{T} \hookrightarrow \mathbf{G}$;
- Deligne-Lusztig representations \implies character sheaves;
- Give a new perspective on class field theory.

Introduction	Greenberg of Néron	Quasicharacter Sheaves	App
000	000000	000000	000

Applications and Further Work

Approach

- For commutative group schemes *G*, locally of finite type over the residue field *k* of *K* we define a category $\mathcal{QC}(G)$ of quasicharacter sheaves on *G*.
- 2 We show

Main Result over k

 $\mathcal{QC}(G)_{/iso}\cong G(k)^*.$

Siven a torus *T* over *K* we construct a commutative group scheme \mathfrak{T} over *k* with $T(K) \cong \mathfrak{T}(k)$.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Main Result for Tori

Theorem (Cunningham & R., [CR13])

For every torus **T** over *K*, there is a pro-algebraic group

 \mathbf{T}/k with $\mathbf{T}(k) = T(K)$

and a monoidal category

$\mathcal{QC}(\mathbf{T})$

of Weil local systems on ${f t}$ so that

 $\mathcal{QC}(\mathbf{T})_{/iso} \cong \mathbf{T}(K)^*.$

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

The Néron model of a torus

Let *R* be the ring of integers of *K* with uniformizer π . The Néron model **T**_{*R*} of **T** is a separated, smooth commutative group scheme over *R*, locally of finite type with the Néron mapping property:

For

As a consequence,

 $\mathbf{T}_R(R)=\mathbf{T}(K).$

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Examples of Néron models

Example (\mathbb{G}_m)

If $\mathbf{T} = \mathbb{G}_m$, then the Néron model for \mathbf{T} is

$$\mathbf{T}_R = \bigcup_{n \in \mathbb{Z}} \mathbb{G}_{m,R},$$

with gluing along generic fibers:

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Examples of Néron models

Example (SO₂)

Let $\mathbf{T} = SO_2$ over K, split over $E = K(\sqrt{\pi})$. Then

$$K[\mathbf{T}] = K[x, y]/(x^2 - \pi y^2 - 1).$$

The Néron model for T is given by

$$R[\mathbf{T}_R] = R[x, y]/(x^2 - \pi y^2 - 1).$$

Here \mathbf{T}_R is finite type, but not connected: the special fiber \mathbf{T}_k of \mathbf{T}_R is given by

$$k[\mathbf{T}_k] = k[x, y]/(x^2 - 1),$$

two disjoint lines.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

The Greenberg functor

Proposition ([DG70, V, §4, no. 1; BLR80, Ch. 9, §6; SN08, §2.2; AC13, §5])

The Greenberg functor

$$(\operatorname{Sch}/R) o (\operatorname{Sch}/k)
onumber \ X o \operatorname{Gr}(X)$$

has the property that, if X is separated and locally of finite type then

 $\operatorname{Gr}(X)(k) = X(R).$

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Greenberg of Néron

Definition

$$\mathbf{\tau} := \operatorname{Gr}(\mathbf{T}_R).$$

Proposition

•
$$\mathbf{T}(k) = \mathbf{T}(K)$$

- 2 \mathfrak{T} is a smooth commutative group scheme over k
- \bigcirc **T** is locally of finite type over k
- $\ \, \bullet \ \, \pi_0({\bf T}) = X_*({\bf T})_{\mathcal I}$

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Greenberg of Néron for \mathbb{G}_m

Set \mathbb{W}_k^{\times} as the group of units in the Witt ring scheme \mathbb{W}_k .

Example

If $\mathbf{T} = \mathbb{G}_m$, then

$$\mathfrak{C}=\coprod_{n\in\mathbb{Z}}\mathbb{W}_k^{ imes}.$$

The component group for ${f \tau}$ is

$$X_*(\mathbf{T})_{\mathcal{I}} = \mathbb{Z},$$

with the trivial $Gal(\bar{k}/k)$ action.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Local Systems

From now on, *G* will denote a smooth, commutative group scheme, locally of finite type over *k* with finitely generated geometric component group. We will write $m : G \times G \rightarrow G$ for multiplication.

Definition (Local System)

An ℓ -adic local system on G is a constructible sheaf of $\overline{\mathbb{Q}}_{\ell}$ -vector spaces on the étale site of G, locally constant on each connected component.

Applications and Further Work

References

Quasicharacter Sheaves

Definition (Quasicharacter sheaf)

A quasicharacter sheaf on G is a triple $\mathcal{L} := (\overline{\mathcal{L}}, \mu, \phi)$, where

- $\bar{\mathcal{L}}$ is a rank-one local system on \bar{G} ,
- ② $\mu: \overline{m}^*\overline{\mathcal{L}} \to \overline{\mathcal{L}} \boxtimes \overline{\mathcal{L}}$ is an isomorphism of sheaves on $\overline{G} \times \overline{G}$, satisfying an associativity diagram.
- $\phi: F_G^* \overline{\mathcal{L}} \to \overline{\mathcal{L}}$ is an isomorphism of sheaves on \overline{G} compatible with μ .

A morphism of quasicharacter sheaves is a morphism of constructible ℓ -adic sheaves on \overline{G} commuting with μ and ϕ .

Tensor product makes $\mathcal{QC}(G)$ into a rigid monoidal category and $\mathcal{QC}(G)_{/iso}$ into a group.

Applications and Further Work

Bounded Quasicharacter Sheaves

Definition (Bounded Quasicharacter Sheaf)

A bounded quasicharacter sheaf on G is a pair (\mathcal{L}_0, μ_0) , where

• \mathcal{L}_0 is a rank-one local system on G,

2 $\mu_0 : m^* \mathcal{L}_0 \to \mathcal{L}_0 \boxtimes \mathcal{L}_0$ is an isomorphism of sheaves on $G \times G$, satisfying the same associativity diagram.

A morphism is a morphism of constructible sheaves on *G* commuting with μ_0 . Write $\mathcal{QC}_0(G)$ for this category.

- Base change defines a full and faithful functor $B_G: \mathcal{QC}_0(G) \to \mathcal{QC}(G)$,
- B_G is an equivalence when G is connected.
- Under the isomorphism QC(G)_{iso} ≅ G(k)*, bounded quasicharacter sheaves correspond to bounded characters.

Applications and Further Work

Discrete Isogenies

Definition (Discrete Isogeny)

A *discrete isogeny* is a finite, surjective, étale morphism of group schemes $f : H \to G$ so that $Gal(\overline{k}/k)$ acts trivially on the kernel of f.

Write C(G) for the category whose objects are pairs (f, ψ) , where

- $f: H \rightarrow G$ is a discrete isogeny,
- ② ψ : ker f → Aut(V) is a representation on a Q_ℓ-vector space.

A morphism $(f, \psi) \rightarrow (f', \psi')$ is a pair (g, T), where

- $g: H' \to H$ is a morphism with $f' = f \circ g$,
- 2 $T: V \rightarrow V'$ is a linear transformation, equivariant for ψ' and $\psi \circ g$.

Applications and Further Work

Finite Quasicharacter Sheaves

Let $C_1(G)$ be the subcategory where V is one-dimensional.

Definition (Finite Quasicharacter Sheaf)

The category $\mathcal{QC}_f(G)$ of *finite quasicharacter sheaves* is the localization of $C_1(G)$ at morphisms where *g* is surjective and *T* is an isomorphism.

Write V_H for the constant sheaf V on H.

- Taking the ψ-isotypic component of f_{*} V_H defines a full and faithful functor L_G : QC_f(G) → QC₀(G).
- L_G is an equivalence when G is connected.
- Under the isomorphism QC(G)_{iso} ≅ G(k)*, finite quasicharacter sheaves correspond to characters with finite image.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Sketch of Main Result

For any G, trace of Frobenius defines a map

 $t_G:\mathcal{QC}(G)_{/iso}
ightarrow G(k)^*.$

Pullback then gives the rows of

- t_{G°} is an isomorphism by [Del77]: the classic function–sheaf dictionary,
- one can build an isomorphism by hand for étale group schemes using stalks,
- the snake lemma finishes the job.

Applications and Further Work

Transfer of quasi-character sheaves

Suppose *T* and *T'* are tori over local fields *K* and *K'*. We say that *T* and *T'* are *N*-congruent if there are isomorphisms

$$\begin{aligned} \alpha : \mathcal{O}_L / \pi_K^N \mathcal{O}_L &\to \mathcal{O}_{L'} / \pi_{K'}^N \mathcal{O}_{L'}, \\ \beta : \operatorname{Gal}(L/K) &\to \operatorname{Gal}(L'/K'), \\ \phi : X^*(T) &\to X^*(T'), \end{aligned}$$

satisfying natural conditions. If T and T' are N-congruent then $\operatorname{Hom}_{< N}(T(K), \overline{\mathbb{Q}}_{\ell}^{\times}) \cong \operatorname{Hom}_{< N}(T'(K'), \overline{\mathbb{Q}}_{\ell}^{\times}).$

- Chai and Yu give an isomorphism of group schemes $\mathbf{T}_n \cong \mathbf{T}'_n$, for *n* depending on *N*.
- This isomorphism induces an equivalence of categories $\mathcal{QC}(\mathbf{T}_n) \rightarrow \mathcal{QC}(\mathbf{T}'_n)$.

Applications and Further Work

References

Class Field Theory

We have constructed the diagram

We hope to be able to construct Langlands parameters directly from quasicharacter sheaves, which would give a different construction of the reciprocity map.

Greenberg of Néron

Quasicharacter Sheaves

Applications and Further Work

References

Non-commutative groups

If **G** is a connected reductive group over K, no Néron model. Instead, parahorics correspond to facets in the Bruhat-Tits building and give models for **G** over \mathcal{O}_K . After taking the Greenberg transform, we can glue the resulting *k*-schemes and try to build sheaves on the resulting space using some form of Lusztig induction from quasicharacter sheaves on a maximal torus. This work is still in progress.

Quasicharacter Sheaves

Applications and Further Work

Affine Grassmanians and Geometric Satake Transforms

• K equal characteristic

The affine Grassmanian $\mathbf{G}(K)/\mathbf{G}(\mathcal{O}_K)$ and affine flag variety $\mathbf{G}(K)/\mathbf{I}$ (here I is the Iwahori) are ind-schemes over k. They play a large role in the geometric Langlands program.

• K mixed characteristic

Can no longer construct these directly as quotients. We are working on defining analogues via gluing Schubert cells. As a test of the construction, we hope to give a geometric Satake transform in mixed characteristic.

Greenberg	of	Néron	
000000			

Applications and Further Work

- [AC13] Alessandra Bertrapelle and Cristian D. Gonzáles-Avilés, *The Greenberg functor revisited*, 2013. arXiv:1311.0051v1.
- [BLR80] Siegfried Bosch, Werner Lütkebohmert, and Michel Reynaud, *Néron models*, Springer-Verlag, Berlin, 1980.
- [CR13] Clifton Cunningham and David Roe, A function-sheaf dictionary for algebraic tori over local fields, 2013. arXiv:1310.2988 [math.AG].
- [Del77] Pierre Deligne, *Cohomologie étale*, Lecture Notes in Mathematics 569, Springer-Verlag, Berlin, 1977.
- [DG70] Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome 1: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Paris, 1970. (Appendix: Michiel Hazewinkel, Corps de classes local).
- [SN08] Julien Sebag and Johannes Nicaise, *Motivic Serre invariants and Weil restriction*, J. Algebra **319** (2008), no. 4, 1585–1610.