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Objective

K – a non-archimedean local field,
T – an algebraic torus over K ,
` – a prime different from p,

X ∗ – for a group X , notation for Hom(X ,Q×` ).

Goal
Attach a space T to T and find a dictionary that translates

{characters of T(K)} ↔ {sheaves on T}.

Try to push characters forward along maps such as T ↪→ G;
Deligne-Lusztig representations =⇒ character sheaves;
Give a new perspective on class field theory.
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Approach

1 For commutative group schemes G, locally of finite type
over the residue field k of K we define a category QC(G) of
quasicharacter sheaves on G.

2 We show

Main Result over k

QC(G)/iso
∼= G(k)∗.

3 Given a torus T over K we construct a commutative group
scheme T over k with T (K ) ∼= T(k).
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Main Result for Tori

Theorem (Cunningham & R., [CR13])
For every torus T over K , there is a pro-algebraic group

T/k with T(k) = T (K )

and a monoidal category

QC(T)

of Weil local systems on T so that

QC(T)/iso
∼= T(K )∗.
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The Néron model of a torus

Let R be the ring of integers of K with uniformizer π. The Néron
model TR of T is a separated, smooth commutative group
scheme over R, locally of finite type with the Néron mapping
property:
For
As a consequence,

TR(R) = T(K ).
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Examples of Néron models

Example (Gm)
If T = Gm, then the Néron model for T is

TR =
⋃
n∈Z

Gm,R,

with gluing along generic fibers:

Gm,R Gm,R R[x0, x−1
0 ]

��

R[xn, x−1
n ]

��
Gm

OO

∼= // Gm

OO

K [x0, x−1
0 ] K [xn, x−1

n ]
isooo

given by: πnx0 xn
�oo



Introduction Greenberg of Néron Quasicharacter Sheaves Applications and Further Work References

Examples of Néron models

Example (SO2)

Let T = SO2 over K , split over E = K (
√
π). Then

K [T] = K [x , y ]/(x2 − πy2 − 1).

The Néron model for T is given by

R[TR] = R[x , y ]/(x2 − πy2 − 1).

Here TR is finite type, but not connected: the special fiber Tk of
TR is given by

k [Tk ] = k [x , y ]/(x2 − 1),

two disjoint lines.
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The Greenberg functor

Proposition ([DG70, V, §4, no. 1; BLR80, Ch. 9, §6;
SN08, §2.2; AC13, §5])
The Greenberg functor

(Sch /R)→ (Sch /k)

X → Gr(X )

has the property that, if X is separated and locally of finite type
then

Gr(X )(k) = X (R).
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Greenberg of Néron

Definition

T := Gr(TR).

Proposition
1 T(k) = T(K )

2 T is a smooth commutative group scheme over k
3 T is locally of finite type over k
4 π0(T) = X∗(T)I
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Greenberg of Néron for Gm

Set W×k as the group of units in the Witt ring scheme Wk .

Example
If T = Gm, then

T =
∐
n∈Z

W×k .

The component group for T is

X∗(T)I = Z,

with the trivial Gal(k̄/k) action.



Introduction Greenberg of Néron Quasicharacter Sheaves Applications and Further Work References

Local Systems

From now on, G will denote a smooth, commutative group
scheme, locally of finite type over k with finitely generated
geometric component group. We will write m : G ×G→ G for
multiplication.

Definition (Local System)
An `-adic local system on G is a constructible sheaf of
Q`-vector spaces on the étale site of G, locally constant on
each connected component.
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Quasicharacter Sheaves

Definition (Quasicharacter sheaf)

A quasicharacter sheaf on G is a triple L := (L̄, µ, φ), where
1 L̄ is a rank-one local system on Ḡ,
2 µ : m̄∗L̄ → L̄� L̄ is an isomorphism of sheaves on Ḡ × Ḡ,

satisfying an associativity diagram.
3 φ : F∗G L̄ → L̄ is an isomorphism of sheaves on Ḡ

compatible with µ.
A morphism of quasicharacter sheaves is a morphism of
constructible `-adic sheaves on Ḡ commuting with µ and φ.

Tensor product makes QC(G) into a rigid monoidal category
and QC(G)/iso into a group.
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Bounded Quasicharacter Sheaves

Definition (Bounded Quasicharacter Sheaf)

A bounded quasicharacter sheaf on G is a pair (L0, µ0), where
1 L0 is a rank-one local system on G,
2 µ0 : m∗L0 → L0 � L0 is an isomorphism of sheaves on

G ×G, satisfying the same associativity diagram.
A morphism is a morphism of constructible sheaves on G
commuting with µ0. Write QC0(G) for this category.

Base change defines a full and faithful functor
BG : QC0(G)→ QC(G),
BG is an equivalence when G is connected.
Under the isomorphism QC(G)/iso

∼= G(k)∗, bounded
quasicharacter sheaves correspond to bounded characters.
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Discrete Isogenies

Definition (Discrete Isogeny)

A discrete isogeny is a finite, surjective, étale morphism of
group schemes f : H → G so that Gal(k̄/k) acts trivially on the
kernel of f .

Write C(G) for the category whose objects are pairs (f , ψ),
where

1 f : H → G is a discrete isogeny,
2 ψ : ker f → Aut(V ) is a representation on a Q`-vector

space.
A morphism (f , ψ)→ (f ′, ψ′) is a pair (g,T ), where

1 g : H ′ → H is a morphism with f ′ = f ◦ g,
2 T : V → V ′ is a linear transformation, equivariant for ψ′ and
ψ ◦ g.
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Finite Quasicharacter Sheaves

Let C1(G) be the subcategory where V is one-dimensional.

Definition (Finite Quasicharacter Sheaf)

The category QCf (G) of finite quasicharacter sheaves is the
localization of C1(G) at morphisms where g is surjective and T
is an isomorphism.

Write VH for the constant sheaf V on H.
Taking the ψ-isotypic component of f∗VH defines a full and
faithful functor LG : QCf (G)→ QC0(G).
LG is an equivalence when G is connected.
Under the isomorphism QC(G)/iso

∼= G(k)∗, finite
quasicharacter sheaves correspond to characters with finite
image.
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Sketch of Main Result

For any G, trace of Frobenius defines a map

tG : QC(G)/iso → G(k)∗.

Pullback then gives the rows of

1 // QC(π0(G))/iso
//

��

QC(G)/iso
//

��

QC(G◦)/iso

��

// 1

1 // (π0(G))(k)∗ // G(k)∗ // G◦(k)∗ // 1

tG◦ is an isomorphism by [Del77]: the classic
function–sheaf dictionary,
one can build an isomorphism by hand for étale group
schemes using stalks,
the snake lemma finishes the job.
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Transfer of quasi-character sheaves

Suppose T and T ′ are tori over local fields K and K ′. We say
that T and T ′ are N-congruent if there are isomorphisms

α : OL/π
N
KOL → OL′/π

N
K ′OL′ ,

β : Gal(L/K )→ Gal(L′/K ′),
φ : X ∗(T )→ X ∗(T ′),

satisfying natural conditions. If T and T ′ are N-congruent then
Hom<N(T (K ),Q×` ) ∼= Hom<N(T ′(K ′),Q×` ).

Chai and Yu give an isomorphism of group schemes
Tn ∼= T′n, for n depending on N.
This isomorphism induces an equivalence of categories
QC(Tn)→ QC(T′n).
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Class Field Theory

We have constructed the diagram

QC(T)/iso
tT

ww &&
Hom(T (K ),Q×` ) recT

// H1(K , T̂`)

We hope to be able to construct Langlands parameters directly
from quasicharacter sheaves, which would give a different
construction of the reciprocity map.
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Non-commutative groups

If G is a connected reductive group over K , no Néron model.
Instead, parahorics correspond to facets in the Bruhat-Tits
building and give models for G over OK . After taking the
Greenberg transform, we can glue the resulting k -schemes and
try to build sheaves on the resulting space using some form of
Lusztig induction from quasicharacter sheaves on a maximal
torus. This work is still in progress.
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Affine Grassmanians and Geometric Satake
Transforms

K equal characteristic
The affine Grassmanian G(K )/G(OK ) and affine flag
variety G(K )/I (here I is the Iwahori) are ind-schemes over
k . They play a large role in the geometric Langlands
program.
K mixed characteristic
Can no longer construct these directly as quotients. We are
working on defining analogues via gluing Schubert cells.
As a test of the construction, we hope to give a geometric
Satake transform in mixed characteristic.
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