Polynomials

Plans for *p*-adics in Sage

David Roe with Xavier Caruso and Julian Rüth

Department of Mathematics University of Calgary

September 5, 2013

Extensions of \mathbb{Q}_p

Completions

Extensions of	\mathbb{Q}_p
0000	1

Ramification

Suppose K/\mathbb{Q}_p has degree *m*. Recall that *K* is equipped with a unique valuation extending that on \mathbb{Q}_p , defined by $v(x) = \frac{1}{m}v_p(\operatorname{Nm}_{K/\mathbb{Q}_p} x)$. value group – the image of *v*, ring of integers – $\mathcal{O}_K = \{x \in K : v(x) \ge 0\}$, maximal ideal – $\mathfrak{p}_K = \{x \in K : v(x) > 0\} = (\pi_K)$, residue field – $k = \mathcal{O}_K/\mathfrak{p}_K$.

If L/K is an extension of degree *n*, write *e* for the index of the value groups and *f* for the degree of the residue field extensions.

Theorem

n = ef

There is a unique subextension M/K that is unramified.

Extensions of \mathbb{Q}_p

Polynomials

Krasner's Lemma

Lemma

Let *K* be a *p*-adic field and fix an algebraic closure \overline{K} . Suppose $f(x) = \prod_{i=1}^{n} (x - \alpha_i) \in K[x]$ is irreducible; set $M = \max_{i,j} v(\alpha_i - \alpha_j)$. We say that $g(x) \in K[x]$ is sufficiently close to f(x) if there is an ordering of the roots $\{\beta_i\}_{i=1}^n$ of *g* with

$$v(\alpha_i - \beta_i) > M.$$

Then such a g is irreducible and $K(\alpha_i) = K(\beta_i)$ for all *i*.

Thus we may talk about *the* field extension defined by a polynomial f, even if we only have a finite approximation to f.

Question

Is there an easy way of rephrasing this condition in terms of the coefficients of f and g?

Extensions of Qp

Polynomials

Completions

Unramified Extensions

Krasner's Lemma implies that two unramified extensions of K are isomorphic if their defining polynomials are congruent modulo \mathfrak{p}_{K} , reflecting the equivalence of categories defined by the Witt vectors functor between finite extensions of k and finite unramified extensions of K.

Polynomials

Completions

Totally Ramified Extensions

If L/K is totally ramified then the minimal polynomial of a uniformizer will be Eisenstein. Conversely, suppose that $f = \pi_{\mathcal{K}}(f_0 + \cdots + f_{n-1}x^{n-1}) + x^n \in \mathcal{K}[x]$ is Eisenstein, and model elements of L = K[x]/(f) as polynomials in x. The image of x in this quotient is a uniformizer, and one can easily compute the valuation of an element from the valuations of its coefficients. Moreover, scaling elements by powers of π_l is aided by the fact that the uniformizer is so simple. Equality testing is also compromised, since extra *p*-adic digits may be required to store all distinct elements modulo π_{I}^{c} .

Question

Are there examples (e.g. cyclotomic fields) where the benefits of using a non-Eisenstein polynomial outweigh the downsides?

General Extensions

In general, we can decompose an extension into an unramified extension followed by a totally ramified extension, and thus we can represent elements as polynomials in two variables, a variable generating the unramified piece, and the uniformizer.

Question

With f arbitrary, suppose we're given a uniformizer in K[x]/(f). What impediments are there to using this representation?

Precision

We will model a polynomial over \mathbb{Z}_p as a polynomial $P \in \mathbb{Z}[x]$ together with a precision structure. Different precision structures:

- flat every coefficient has the same absolute precision,
- newton the precision of the error term is given by a convex polygon,

jagged - each coefficient has its own individual precision.

We can perform arithmetic operations separately on the approximating polynomials and the precision structures.

Precision for Evaluation

Here we consider the function $f : K[X] \times K \to K, (P, a) \mapsto P(a)$. We have:

$$(P+dP)(a+da) = P(a+da) + dP(a+da) = P(a) + P'(a)da + dP(a) + (\text{terms of order} \ge 2).$$

Hence, the differential of *f* is given by:

$$df_{(P,a)}(dP, da) = dP(a) + P'(a)da.$$

Precision for Euclidean division

Let *d* be a positive integer. Let $K_{=d}[X]$ denote the open subset of $K_{<d+1}$ of polynomials of degree exactly *d*. It is apparently a differentiable variety (of dimension d + 1) over *K*. Consider the function $f : K[X] \times K_d[X] \to K[X] \times K_{<d}[X], (A, B) \mapsto (Q, R)$ where *Q* and *R* denote respectively the quotient and the reminder in the euclidean division of *A* by *B*. The differential of *f* can be computed as follows. From (A + dA) = (B + dB)(Q + dQ) + (R + dR) we get

$$dA - dB \cdot Q = B \cdot dQ + dR.$$

Hence $df_{(A,B)}(dA, dB) = (dQ, dR)$ where dQ and dR are the quotient and the reminder in the euclidean division of $dA - dB \cdot Q$ by B.

Let *d* be a positive integer. Suppose we are given $P \in K_{<d}[X]$ and $a \in K$ a simple root of *P*. Then we can follow this root on a neighbourhood of *P*: there exists a continuous map $f : U \to K$ (where *U* is an open subset containing *P*) such that Q(f(Q)) = 0 for all $Q \in U$. Actually, *f* is also differentiable at *P* and we can compute its differential thanks to the following computation:

$$0 = (P+dP)(a+da) = P(a)+dP(a)+P'(a)da+(\text{terms of order} \geq 2).$$

We find:

$$df_P(dP) = -rac{dP(a)}{P'(a)}.$$

Precision for Factoring

Suppose $P \in K[x]$ has a newton precision with nonzero constant term, and that Q and R are high precision polynomials with P = QR up to the precision dP of P. We would like to define a meaningful notion of the precision of Q and R. Since Q and R have high precision and P has a nonzero constant term, Q and R have well defined Newton polygons, N(P) and N(R). Suppose we introduced precisions, Q + dQand R + dR. Then the precision of the product is $Q \cdot dR + dQ \cdot R$. The precision dR should be maximal so that the newton polygon $N(Q \cdot dR)$ is below N(dP).

Question

This maximality constraint does not define dR uniquely. How should we choose among different precisions dR?

Extensions of \mathbb{Q}_p 00000

Non-unique precision for factoring

Suppose
$$dP = p^10 + p^8x + p^8x^2 + p^8x^3 + p^10$$
 and $Q = p + x + px^2$. Then

$$dR = p^7(p^2 + x + p^2x^2)$$

and

$$dR = p^8(1 + x + x^2)$$

are both maximal choices for *dR*.

Extensions of Qp 00000

Completions

Suppose $p \in \mathbb{Z}$ is prime and K is a number field defined by a polynomial $f \in \mathbb{Q}[x]$. We would like to find the completions of K at primes above p. This is equivalent to factoring $f = \prod_i f_i$ in $\mathbb{Q}_p[x]$. The inclusion $K \hookrightarrow K_i$ of $K = \mathbb{Q}[x]/(f)$ into the completion $K_i = \mathbb{Q}_p[x]/(f_i)$ is the obvious one.

Global questions

Once we have completions $K \hookrightarrow K_i$, we may ask global questions.

Question (Weak Approximation)

Suppose we're given a finite set S of primes in K and elements $\alpha_{\nu} \in K_{\nu}$ for $\nu \in S$. How can we find $\alpha \in K$ so that the image of α in K_{ν} is α_{ν} ?