# The Local Langlands Correspondence and character sheaves

#### David Roe

Department of Mathematics University of Calgary/PIMS

University of Washington: Number Theory Seminar

David Roe The Local Langlands Correspondence and character sheaves

# Outline

#### Introduction to Local Langlands

- Local Langlands for GL<sub>n</sub>
- Beyond GL<sub>n</sub>
- DeBacker-Reeder
- 2 Local Langlands for Tamely Ramified Unitary Groups
  - The Torus
  - The Character
  - Embeddings and Induction

#### 3 Character Sheaves

- A Different Induction Process
- Greenberg of Néron
- Character Sheaves

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

## What is the Langlands Correspondence?

- A generalization of class field theory to non-abelian extensions.
- A tool for studying L-functions.
- A correspondence between representations of Galois groups and representations of algebraic groups.

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# Local Class Field Theory

#### Irreducible 1-dimensional representations of $\mathcal{W}_{\mathbb{Q}_p}$

\$

#### Irreducible representations of $GL_1(\mathbb{Q}_p)$

The 1-dimensional case of local Langlands is local class field theory.



# Conjecture

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

#### Irreducible n-dimensional representations of $\mathcal{W}_{\mathbb{Q}_p}$

\$

#### Irreducible representations of $GL_n(\mathbb{Q}_p)$

In order to make this conjecture precise, we need to modify both sides a bit.

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

## **Smooth Representations**

For n > 1, the representations of  $GL_n(\mathbb{Q}_p)$  that appear are usually infinite dimensional.

#### Definition

A smooth  $\mathbb{C}$ -representation of  $\operatorname{GL}_n(\mathbb{Q}_p)$  is a pair  $(\pi, V)$ , where

- *V* is a C-vector space (possibly infinite dimensional),
- $\pi$ :  $\operatorname{GL}_n(\mathbb{Q}_p) \to \operatorname{GL}(V)$  is a homomorphism,
- The stabilizer of each  $v \in V$  is open in  $GL_n(\mathbb{Q}_p)$ .

The only finite-dimensional irreducible smooth  $\pi$  are

 $\pmb{g}\mapsto \chi(\det(\pmb{g}))$ 

for some character  $\chi \colon \mathbb{Q}_p^{\times} \to \mathbb{C}^{\times}$ .

ヘロン ヘアン ヘビン ヘビン

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

## Langlands Parameters

We also need to clarify what kinds of representations of  $\mathcal{W}_{\mathbb{Q}_p}$  to focus on.

#### Definition

A Langlands parameter is a pair  $(\varphi, V)$  with

$$\varphi \colon \mathcal{W}_{\mathbb{Q}_p} \to \mathrm{GL}(V) \qquad \qquad \dim_{\mathbb{C}} V = n$$

such that  $\varphi$  is continuous and semisimple.

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# Parabolic Subgroups

Given a number of Langlands parameters  $\varphi_i \colon \mathbf{W}_{\mathbb{Q}_p} \to \mathrm{GL}(V_i)$ , one can form their direct sum. There should be a corresponding operation on the  $\mathrm{GL}_n(\mathbb{Q}_p)$  side.

| Definition                          |    |   |   |   |    |
|-------------------------------------|----|---|---|---|----|
| A parabolic subgroup of $GL_n$ is a | (* | * | * | * | *) |
| subgroup P conjugate to one         | 0  | * | * | * | *  |
| consisting of block triangular      | 0  | * | * | * | *  |
| matrices of a given pattern. For    | 0  | 0 | 0 | * | *  |
| example:                            | (0 | 0 | 0 | * | */ |

Such a subgroup has a Levi decomposition  $P = M \ltimes N$ , where M is conjugate to the corresponding subgroup of block diagonal matrices, and N consists of the subgroup of P with identity blocks on the diagonal.

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# Parabolic Induction

Since each Levi subgroup *M* is just a direct product of  $GL_{n_i}$ , a collection of representations  $\pi_i \colon GL_{n_i}(\mathbb{Q}_p) \to GL(V_i)$  yields a representation  $[\times]_i \pi_i$  of *M*. We can pull this back to *P* and then induce to obtain

$$\pi = \operatorname{Ind}_{P}^{\operatorname{GL}_{n}(\mathbb{Q}_{p})} \bigotimes_{i} \pi_{i}.$$

#### Definition

We say that  $\pi$  is the *parabolic induction* of the  $\pi_i$ . We say that  $\pi$  is *supercuspidal* if  $\pi$  is not parabolically induced from any proper parabolic subgroup of  $GL_n(\mathbb{Q}_p)$ .

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# The Weil-Deligne Group

There is a natural bijection

Supercuspidal representations of  $GL_n(\mathbb{Q}_p)$ 

*n*-dimensional irreducible representations of  $\mathcal{W}_{\mathbb{Q}_p}$ .

But the parabolic induction of irreducible representations does not always remain irreducible. To extend this bijection from supercuspidal representations of  $GL_n(\mathbb{Q}_p)$  to all smooth irreducible representations of  $GL_n(\mathbb{Q}_p)$ , one enlarges the right hand side using the following group:

 $\leftrightarrow$ 

$$WD_{\mathbb{Q}_p} := \mathcal{W}_{\mathbb{Q}_p} \times SL_2(\mathbb{C}).$$

Local Langlands for GLn DeBacker-Reeder

Theorem (Local Langlands for GL<sub>n</sub>: Harris-Taylor, Henniart)

There is a unique system of bijections

Irreducible representations of  $\operatorname{GL}_n(\mathbb{Q}_p)$ 

n-dimensional recn irreducible representations of  $WD_{O_n}$ 

- rec<sub>1</sub> is induced by the Artin map of local class field theory.
- rec<sub>n</sub> is compatible with 1-dimensional characters:  $\operatorname{rec}_n(\pi \otimes \chi \circ \operatorname{det}) = \operatorname{rec}_n(\pi) \otimes \operatorname{rec}_1(\chi).$
- The central character  $\omega_{\pi}$  of  $\pi$  corresponds to det  $\circ$  rec<sub>n</sub>:  $\operatorname{rec}_1(\omega_{\pi}) = \operatorname{det}(\operatorname{rec}_n(\pi)).$
- $\operatorname{rec}_n(\pi^{\vee}) = \operatorname{rec}_n(\pi)^{\vee}$
- rec<sub>n</sub> respects natural invariants associated to each side. namely L-factors and  $\epsilon$ -factors of pairs.

# A First Guess

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

Now suppose **G** is some other connected reductive group defined over  $\mathbb{Q}_p$ , such as SO<sub>n</sub>, Sp<sub>n</sub> or U<sub>n</sub>. We'd like to use a Langlands correspondence to understand representations of  $\mathbf{G}(\mathbb{Q}_p)$  in terms of Galois representations. Something like

Homomorphisms  $\varphi \colon WD_{\mathbb{Q}_p} \to \mathbf{G}(\mathbb{C})$ 

 $\leftrightarrow$ 

Irreducible representations of  $\mathbf{G}(\mathbb{Q}_p)$ .

・ロト ・ 同ト ・ ヨト ・ ヨト

We need to modify this guess in two ways:

- change  $\mathbf{G}(\mathbb{C})$  to a related group,  ${}^{L}\mathbf{G}(\mathbb{C})$ ,
- and account for the fact that our correspondence is no longer a bijection.

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# Reductive groups over algebraically closed fields are classified by root data

$$(\textit{X}^*(\textit{S}), \Phi(\textit{G}, \textit{S}), \textit{X}_*(\textit{S}), \Phi^{\vee}(\textit{G}, \textit{S})),$$

where

Root Data

- $S \subset G$  is a maximal torus,
- $X^*(\mathbf{S})$  is the lattice of characters  $\chi \colon \mathbf{S} \to \mathbb{G}_m$ ,
- $X_*(\mathbf{S})$  is the lattice of cocharacters  $\lambda \colon \mathbb{G}_m \to \mathbf{S}$ ,
- Φ(G, S) is the set of roots (eigenvalues of the adjoint action of S on g),
- $\Phi^{\vee}(\mathbf{G}, \mathbf{S})$  is the set of coroots ( $\langle \alpha, \alpha^{\vee} \rangle = 2$ ).

ヘロト ヘアト ヘビト ヘビト

э.

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

## Connected Langlands Dual

Given  $\mathbf{G} \supset \mathbf{S}$ , the connected Langlands dual group  $\hat{\mathbf{G}}$  is defined to be the algebraic group over  $\mathbb{C}$  with root datum

 $(\textit{\textbf{X}}_{\ast}(\textit{\textbf{S}}), \Phi^{\,\vee}(\textit{\textbf{G}}, \textit{\textbf{S}}), \textit{\textbf{X}}^{\ast}(\textit{\textbf{S}}), \Phi(\textit{\textbf{G}}, \textit{\textbf{S}})).$ 

For semisimple groups, this has the effect of exchanging the long and short roots (as well as interchanging the simply connected and adjoint forms).

|   |                 |                  |     | Sp <sub>2n</sub>          |                  |                 |
|---|-----------------|------------------|-----|---------------------------|------------------|-----------------|
| Ĝ | GL <sub>n</sub> | PGL <sub>n</sub> | SLn | SO <sub>2<i>n</i>+1</sub> | SO <sub>2n</sub> | GL <sub>n</sub> |

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# Langlands Dual Group

For non-split **G**, such as U<sub>n</sub>, we need to work a little harder. Suppose that **G** is quasi-split with Borel **B**  $\supset$  **S**, splitting over a finite extension  $E/\mathbb{Q}_p$ . The fact that **B** is defined over  $\mathbb{Q}_p$  implies that  $\text{Gal}(E/\mathbb{Q}_p)$  acts on the root datum. The connected dual group  $\hat{\mathbf{G}}$  comes equipped with maximal torus  $\hat{\mathbf{S}}$  canonically dual to **S**. By choosing basis vectors for each (1-dimensional) root space in the Lie algebra of  $\hat{\mathbf{G}}$ , we can extend the action of  $\text{Gal}(E/\mathbb{Q}_p)$  from the root datum to an action on  $\hat{\mathbf{G}}$ . Define

$${}^{L}\mathbf{G} := \hat{G} \rtimes \operatorname{Gal}(E/\mathbb{Q}_{p}),$$

the L-group of G.

・ 同 ト ・ ヨ ト ・ ヨ ト

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# **Unitary Groups**

A unitary group over  $\mathbb{Q}_{\rho}$  is specified by the following data:

- *E*/ℚ<sub>p</sub> a quadratic extension (so for *p* ≠ 2 there are three possibilities),
- set  $\tau \in \text{Gal}(E/\mathbb{Q}_p)$  the nontrivial element,
- V an n-dimensional E-vector space,
- Non-degenerate Hermitian form  $\langle , \rangle$  (so  $\langle x, y \rangle = \tau \langle y, x \rangle$ ).

Then U(V) is the group of automorphisms of V preserving  $\langle, \rangle$ . Over  $\overline{\mathbb{Q}}_p$ , U becomes isomorphic to  $\operatorname{GL}_n$ , so  $\widehat{U}_n$  is  $\operatorname{GL}_n$ , but  ${}^L\mathbf{G}$  is non-connected:  $\tau$  acts on  $\operatorname{GL}_n(\mathbb{C})$  by the outer automorphism

$$g \mapsto (g^{-1})^{\mathsf{T}}.$$

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

## Langlands Parameters

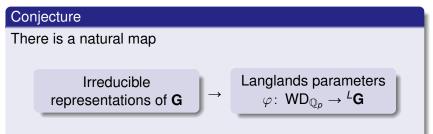
A Langlands parameter is now an equivalence class of homomorphisms

$$\varphi \colon \mathsf{WD}_{\mathbb{Q}_p} \to {}^L\mathbf{G}.$$

- We require that the composition of  $\varphi$  with the projection  ${}^{L}\mathbf{G} \to \operatorname{Gal}(E/\mathbb{Q}_p)$  agrees with the standard projection  $\mathcal{W}_{\mathbb{Q}_p} \to \operatorname{Gal}(E/\mathbb{Q}_p)$ .
- We consider two parameters to be equivalent they are conjugate by an element of Ĝ. This definition of equivalence is chosen to match up with the notion of isomorphic representations on the G(Q<sub>p</sub>) side.



Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder



It is surjective and finite-to-one; the fibers are called *L-packets*.

## L-packets

Moreover, we can naturally parameterize these fibers. Given a Langlands parameter  $\varphi$ , let  $Z_{\hat{\mathbf{G}}}(\varphi)$  be the centralizer in  $\hat{\mathbf{G}}$  of  $\varphi$ , and let  ${}^{L}Z$  be the center of  ${}^{L}\mathbf{G}$ . Define

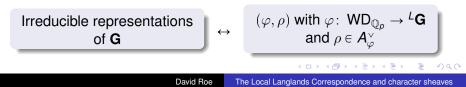
Beyond GL<sub>n</sub>

$$\boldsymbol{A}_{\varphi} = \pi_{\boldsymbol{0}}(\boldsymbol{Z}_{\hat{\boldsymbol{\mathsf{G}}}}(\varphi)/{}^{\boldsymbol{\mathsf{L}}}\boldsymbol{Z}).$$

The fibers should be in bijection with

$$A_{\varphi}^{\vee} = \{$$
irreducible representations of  $A_{\varphi}\}.$ 

So we get a natural bijection



Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

## Approaches to Local Langlands

- One approach to proving the local Langlands correspondence for general G is to try to reduce to the GL<sub>n</sub> case: the recent book of Jim Arthur for example.
- Another approach is that of Stephen DeBacker and Mark Reeder, outlined below.

#### Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# Assumptions

- Let G be a connected reductive group defined over Q<sub>p</sub>, and assume that G splits over an unramified extension E/Q<sub>p</sub>.
- Let  $\varphi$  be a Langlands parameter vanishing on SL<sub>2</sub>( $\mathbb{C}$ ).
- Assume that  $\varphi$  is *tame*: it vanishes on wild inertia.
- Assume that φ is *discrete*: the centralizer of φ in Ĝ is finite modulo the center of <sup>L</sup>G.
- Assume that φ is *regular*: the image of inertia is generated by a semisimple element of Ĝ whose centralizer is a maximal torus Ŝ.

DeBacker-Reeder produce an L-packet that satisfies many of the properties expected of the local Langlands correspondence.

# DeBacker and Reeder's approach

For each  $\lambda \in X^*(\hat{\mathbf{S}})$  they construct

- $F_{\lambda}$ , a twisted action of Frobenius on  $G(\overline{\mathbb{Q}}_{p})$ , and
- $\pi_{\lambda}$ , a representation of  $\mathbf{G}(\bar{\mathbb{Q}}_p)^{\mathsf{F}_{\lambda}}$ .

They define an equivalence relation on such pairs, and prove that the equivalence class of  $(\pi_{\lambda}, F_{\lambda})$  depends only on the class of  $\lambda$  in

$$X^*(\hat{\mathbf{S}})/(1-w heta)X^*(\hat{\mathbf{S}})\supseteq A_{arphi}^{\scriptscriptstyleee}$$

where  $w\theta$  is the automorphism of  $X^*(\hat{\mathbf{S}})$  induced by  $\varphi(\mathsf{F}) \in \mathsf{N}_{L_{\mathbf{G}}}(\hat{\mathbf{S}})$ . The  $\lambda$  with image in  $A_{\varphi}^{\vee}$  are those with  $\mathbf{G}(\bar{\mathbb{Q}}_p)^{\mathsf{F}_{\lambda}} \cong \mathbf{G}(\mathbb{Q}_p)$ , and the corresponding equivalence classes of  $\pi_{\lambda}$  form the L-packet associated to  $\varphi$ .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Local Langlands for GL<sub>n</sub> Beyond GL<sub>n</sub> DeBacker-Reeder

# The Construction of $\pi_{\lambda}$

- Using the Bruhat-Tits building they construct an anisotopic torus T<sub>λ</sub> in G,
- apply a canonical modification to φ so that the image lies in a group isomorphic to <sup>L</sup>T<sub>λ</sub>,
- obtain a character of T<sub>λ</sub>(F<sub>p</sub>) using the (depth-preserving) local Langlands correspondence for tori,
- use Deligne-Lusztig theory to produce an irreducible representation of the parahoric subgroup G<sub>λ</sub>, and
- compactly induce to G(Q
  <sub>p</sub>)<sup>F<sub>λ</sub></sup>, yielding a depth zero supercuspidal representation π<sub>λ</sub>.

イロン 不同 とくほ とくほ とう

## L-packets

They then prove that  $\mathbf{G}(\mathbb{Q}_p)$  acts on the pairs  $(\mathsf{F}_\lambda, \pi_\lambda)$ , and the orbit of a given pair is independent of all choices. Moreover, two such pairs are equivalent if and only if the two  $\lambda$ s are equivalent modulo  $(1 - w\theta)X^*(\hat{\mathbf{S}})$ . Much of their paper is then devoted to proving that this construction yields L-packets with desirable properties:

DeBacker-Reeder

- The ratio of formal degrees deg(π<sub>λ</sub>)/deg(St<sub>λ</sub>) is independent of λ.
- Generic representations in the L-packet correspond to hyperspecial vertices in the building.
- Their L-packet yields a stable class function on the set of strongly regular semisimple elements of G(Qp).

The Torus The Character Embeddings and Induction

# Restrictions on $\varphi$

From now on we fix a totally ramified quadratic extension  $E/\mathbb{Q}_p$ and set  $\mathbf{G} = \mathbf{U}(V)$  for V a quasi-split Hermitian space over E. We say that a Langlands parameter  $\varphi$  is

- discrete if  $Z_{\hat{G}}(\varphi)$  is finite,
- tame if φ factors through the maximal tame quotient (and thus p ≠ 2).
- regular if Z<sub>Ĝ</sub>(φ(τ̃)) is connected and minimum dimensional (here τ̃ is a procyclic generator of tame inertia).

We will construct an L-packet of supercuspidal representations of  $G(\mathbb{Q}_p)$  given a tame, discrete regular parameter.

The Torus The Character Embeddings and Induction

# Filtrations

 $\bm{G}(\mathbb{Q}_p)$  acts on the Bruhat-Tits building  $\mathcal{B}(\bm{G})$ , and we can classify the compact subgroups of  $\bm{G}(\mathbb{Q}_p)$  as stabilizers of convex subsets of  $\mathcal{B}(\bm{G})$ 

- Any compact subgroup can be written as  $H(\mathbb{Z}_p)$  for some  $\mathbb{Z}_p$ -scheme H.
- There is a decreasing filtration on each compact subgroup.
- H<sup>0</sup> is the schematic closure of the identity component on the special fiber and is of finite index in **H**.
- $\mathbf{H}(\mathbb{F}_p)$  is given by  $\mathbf{H}/\mathbf{H}^{0+}$ .
- The filtration on **T** is the one given by Moy and Prasad, coming from the filtration on Q<sup>×</sup><sub>p</sub>.

We can thus obtain representations of compact subgroups of **G** by pulling back representations of reductive groups over finite fields.  $\Box = \Box = \Box = \Box$ 

# Outline

Our plan for constructing an L-packet from  $\varphi$  is as follows. We construct:

- A maximal unramified anisotropic torus **T**, which embeds into **G** in various ways,
- A character  $\chi_{\varphi}$  on  $\mathbf{T}^{0}$  that vanishes on  $\mathbf{T}^{0+}$ ,
- For each ρ ∈ A<sup>∨</sup><sub>φ</sub>, an embedding of T into a maximal compact subgroup H ⊂ G.
- We get a Deligne-Lusztig representation of H<sup>0</sup>(F<sub>ρ</sub>) = H<sup>0</sup>/H<sup>0+</sup> associated to the torus T<sup>0</sup>(F<sub>ρ</sub>) = T<sup>0</sup>/T<sup>0+</sup> and the character χ<sub>φ</sub>.
- We induce this representation up to a representation of G.

ヘロン ヘアン ヘビン ヘビン

The Torus The Character Embeddings and Induction

# Structure of a Tame Parameter

The tame Weil group is topologically generated by two elements: an (arithmetic) Frobenius F and a generator  $\tilde{\tau}$  of the procyclic group

$$\mathcal{I}_{\mathbb{Q}_p} = \operatorname{Gal}( \varinjlim_{\to} \widetilde{K}(p^{1/m}) / \widetilde{K}) \cong \prod_{\ell \neq p} \mathbb{Z}_{\ell}.$$

- The assumption that *E*/ℚ<sub>p</sub> is totally ramified implies that φ(F) ∈ Ĝ, while φ(τ̃) ∈ <sup>L</sup>G projects to τ ∈ Gal(*E*/ℚ<sub>p</sub>).
- Recall that we have a specified maximal torus Ŝ in <sup>L</sup>G. As Langlands parameters are defined only up to conjugacy, we may conjugate so that φ(τ̃) ∈ Ŝ<sup>τ</sup> ⋊ Gal(E/Q<sub>p</sub>).

The Torus The Character Embeddings and Induction

# A Twisted Torus

The equality

$$F \tilde{\tau} F = \tilde{\tau}^p$$

implies that  $\varphi(F)$  lies in the normalizer of  $\varphi(\tilde{\tau})$ , and thus in the normalizer of  $\hat{S}$ .

 Composing with the projection onto the Weyl group, we get a cocycle in

$$H^1(\langle \mathsf{F} \rangle, \textit{W}^{\mathcal{I}}) \hookrightarrow H^1(\mathbb{Q}_p, \textit{W}).$$

Such a cocycle is precisely the data needed to define a torus over Q<sub>p</sub> as a twist of S: here we've identified the Weyl groups of S and Ŝ. Write T for this torus.

ヘロト ヘアト ヘビト ヘビ

The Torus The Character Embeddings and Induction

# Unramified and Anisotropic

- **T** cannot literally be unramified, since no torus in **G** splits over an unramified extension. But it does become isomorphic to the canonical torus **S** after an unramified extension: we will call such tori in **G** *unramified*.
- A torus T is called *anisotropic* if X<sub>\*</sub>(T)<sup>Gal(Q̄<sub>p</sub>/Q<sub>p</sub>)</sup> = 0, or equivalently if T(Q<sub>p</sub>) is compact. The action of inertia on T is the same as on Ŝ, so any invariants in X<sub>\*</sub>(T) would yield invariants in X<sub>\*</sub>(S<sup>τ</sup>) under the action of φ(F). But any such invariants would contradict our assumption that φ is discrete, since

$$(\hat{\mathfrak{g}}^{\mathcal{I}})^{\mathsf{F}} = \mathbf{0}.$$

Thus T is anisotropic.

The Torus The Character Embeddings and Induction

# Image of a Parameter

- Since the tame Weil group is topologically generated by F and τ̃, the image of φ is contained in N<sub>Ĝ</sub>(Ŝ) ⋊ Gal(E/ℚ<sub>p</sub>). In fact, it is contained in the subgroup D of <sup>L</sup>G generated by Ŝ ⋊ Gal(E/ℚ<sub>p</sub>) and φ(F).
- The minimal splitting field M = Q<sub>p<sup>s</sup></sub> · E of T has Galois group

$$\operatorname{Gal}(M/\mathbb{Q}_p) \cong \operatorname{Gal}(E/\mathbb{Q}_p) \times \langle w \rangle,$$

where  $w \in \mathbf{W}^{\mathcal{I}}$  is the image of  $\varphi(\mathbf{F})$ . Thus *D* fits into an exact sequence

$$1 \to \hat{\mathbf{S}} \to D \to \operatorname{Gal}(M/\mathbb{Q}_p) \to 1.$$

# A Character

 Suppose that this sequence split and D ≃ Î × Gal(M/Q<sub>ρ</sub>). Then φ would yield an element of H<sup>1</sup>(Q<sub>ρ</sub>, Î), and the local Langlands correspondence for tori would give us a character of T(Q<sub>ρ</sub>):

The Character

$$H^1(\mathbb{Q}_p, \hat{T}) \cong Hom(T(\mathbb{Q}_p), \mathbb{C}^{\times}).$$

In general the sequence for *D* does not split. So our next task is to modify the Langlands correspondence for tori to obtain a character in the non-split case. We will get a character χ<sub>φ</sub> of T<sup>0</sup>(Q<sub>p</sub>).

・ロト ・ 同ト ・ ヨト ・ ヨト

The Torus The Character Embeddings and Induction

# Constructing $\chi_{\varphi}$

- Let Γ = Gal(Q<sub>p<sup>s</sup></sub>/Q<sub>p</sub>). Since χ was determined by the restriction of a parameter on all of Gal(Q
  <sub>p</sub>/Q<sub>p</sub>), it factors through the coinvariants T(Q<sub>p<sup>s</sup></sub>)<sub>Gal(Q<sub>p<sup>s</sup></sub>/Q<sub>p</sub>)</sub>.
- From Tate cohomology we have

$$1 \to \hat{H}^{-1}(\Gamma, T) \to T(\mathbb{Q}_{\rho^s})_{\Gamma} \to T(\mathbb{Q}_{\rho}) \to \hat{H}^0(\Gamma, T) \to 1$$

When  $T^0(\mathbb{Q}_p) \neq T(\mathbb{Q}_p)$ , the outer groups can be nontrivial.

くロト (過) (目) (日)

The Torus The Character Embeddings and Induction

# Depth of Character

- Using Lang's theorem on the cohomology of connected algebraic groups over finite fields, the corresponding outer terms for T<sup>0</sup> vanish. We define χ<sub>φ</sub> as the restriction of χ to T<sup>0</sup>(Q<sub>p<sup>s</sup></sub>)<sub>Γ</sub> ≅ T<sup>0</sup>(Q<sub>p</sub>).
- Since φ vanished on wild inertia, the depth-preservation properties of the local Langlands correspondence for tori imply that χ<sub>φ</sub> vanishes on T<sup>0+</sup>(Q<sub>ρ</sub>), and thus induces a character of T<sup>0</sup>(F<sub>ρ</sub>).
- The regularity of φ implies that χ<sub>φ</sub> is not fixed by any element of W<sup>I</sup>: it is in "general position."

・ロト ・ 同ト ・ ヨト ・ ヨト



The Torus The Character Embeddings and Induction

From a Langlands parameter  $\varphi$  we've produced:

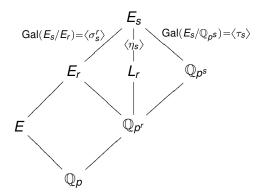
- An anisotropic unramified torus T. Note that T is not yet provided with an embedding into G.
- A character  $\chi_{\varphi}$  of  $\mathbf{T}^{0}(\mathbb{F}_{p})$ .

In order to produce representations of  $G(\mathbb{Q}_p)$  we need to understand the embeddings of **T** into **G**.

The Torus The Character Embeddings and Induction

# **Basic** Tori

We classify unramified anisotropic twists of the "quasi-split" torus **S**. For each s = 2r, define  $T_s = \{x \in E_s : Nm_{E_s/L_r} x = 1\}$ ,



Every anisotropic unramified torus in **G** is a product of such basic tori, together with at most one copy of  $U_1$ .

The Torus The Character Embeddings and Induction

# Embeddings of Basic Tori

In order to get Deligne-Lustig representations, we need to embed **T** into maximal compacts of **G**. We do so by building a Hermitian space around each basic torus in the product decomposition of **T**.

For each  $\kappa \in L_r^{\times}$ , we define a Hermitian product on  $E_s$ 

$$\phi_{\kappa}(\boldsymbol{x}, \boldsymbol{y}) = \mathrm{Tr}_{\boldsymbol{E}_{\boldsymbol{s}}/\boldsymbol{E}}(\frac{\kappa}{\pi_{\boldsymbol{L}}}\boldsymbol{x} \cdot \eta_{\boldsymbol{s}}(\boldsymbol{y})).$$

This Hermitian space is quasi-split if and only if  $v_L(\kappa)$  is even. By the definition of  $\mathbf{T}_s$  we have an embedding of  $\mathbf{T}_s$  into  $U(E_s, \phi_{\kappa})$ .

The Torus The Character Embeddings and Induction

# Embeddings of General Tori

In general, we choose a  $\kappa_i$  for each basic torus in the decomposition of **T**. This choice corresponds to a choice of  $\rho \in A_{\varphi}^{\vee}$  as long as the sum of the valuations of the  $\kappa_i$  is even.

We prove T fixes a unique point on the building  $\mathcal{B}(G)$  and thus embeds in a unique maximal compact  $H \subset G$ . The reduction of H is

 $O(m) \times Sp(m')$ ,

where *m* is the sum of the dimensions of basic tori whose  $\kappa_i$  has even valuation and *m'* is the sum of those with  $v(\kappa_i)$  odd.

The Torus The Character Embeddings and Induction

# Constructing a representation of $G(\mathbb{Q}_p)$

Modulo p, we have a maximal torus  $\mathbf{T}^0(\mathbb{F}_p)$  sitting in a connected reductive group  $\mathbf{H}^0(\mathbb{F}_p)$  and a character  $\chi_{\varphi}$  of  $\mathbf{T}^0(\mathbb{F}_p)$ . This situation was studied by Deligne and Lusztig, and they produce a representation of  $\mathbf{H}^0(\mathbb{F}_p)$  using étale cohomology. The irreducibility of this representation follows from the regularity condition on  $\varphi$ . We pull back to  $\mathbf{H}^0$  and the only wrinkle in the induction process occurs between  $\mathbf{H}^0$  and  $\mathbf{H}$ . Once we have a representation of  $\mathbf{H}$ , we define a representation on all of  $\mathbf{G}(\mathbb{Q}_p)$  by compact induction.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Torus The Character Embeddings and Induction

# A Finite Induction

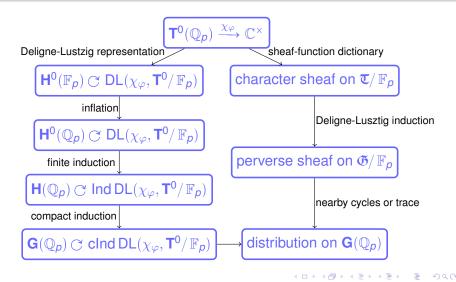
There are three cases for the induction from  $H^0$  to H.

- *n* even,  $\mathbf{H}(\mathbb{F}_p) = \operatorname{Sp}(n)$ . Here  $\mathbf{H} = \mathbf{H}^0$  and there is no induction.
- *n* even, otherwise. The fact that the normalizer of T<sup>0</sup>(F<sub>p</sub>) in H(F<sub>p</sub>) contains the normalizer in H<sup>0</sup>(F<sub>p</sub>) with index 2 implies that the induction remains irreducible.
- n odd. Now the induction from H<sup>0</sup> to H splits into two irreducible components. We can pick one using a recipe for the central character, together with the fact that in the case that n is odd the center of O(m) is not contained in SO(m).

ヘロト ヘワト ヘビト ヘビト

#### A Different Induction Process Greenberg of Néron Character Sheaves

# Two Paths



David Roe The Local Langlands Correspondence and character sheaves

A Different Induction Process Greenberg of Néron Character Sheaves

# Current work

The remainder of this talk is

- joint with Clifton Cunningham
- a summary of work in progress.

The right hand side of the diagram outlines an alternate construction of a distribution on  $G(\mathbb{Q}_p)$  from a depth zero character on  $T^0(\mathbb{Q}_p)$  and an embedding  $T \hookrightarrow G$ .

#### Warning: no step on the right side is complete

For the remainder of this talk I will discuss the first arrow: the passage from a depth zero character of **T** to a character sheaf on a related scheme  $\tau$ .

・ロト ・ 同ト ・ ヨト ・ ヨト

A Different Induction Process Greenberg of Néron Character Sheaves

# The Néron model of $\mathbb{G}_m$

Now let  $\mathbf{T} = \mathbb{G}_m$ . The Néron model of **T** is a separated, smooth commutative group scheme  $\mathbf{T}_{\mathbb{Z}_p}$  locally of finite type over  $\mathbb{Z}_p$  with the Néron mapping property. In particular,

$$\mathbf{T}_{\mathbb{Z}_{\rho}}(\mathbb{Z}_{\rho}) = \mathbf{T}(\mathbb{Q}_{\rho}) = \mathbb{Q}_{\rho}^{\times}.$$

The earlier  $\mathbf{T}^0$  is just the identity component of the Néron model, and in the  $\mathbb{G}_m$  case the Néron model is a union of copies of  $\mathbb{G}_m/\mathbb{Z}_p$ , glued along the generic fiber. Set  $\mathbf{T}_d = \mathbf{T}_{\mathbb{Z}_p} \times_{\mathbb{Z}_p} (\mathbb{Z}/p^{d+1}\mathbb{Z})$ .

A Different Induction Process Greenberg of Néron Character Sheaves

# The Greenberg functor

The Greenberg functor Gr takes an affine group scheme over an Artinian local ring A and produces an affine group scheme over the residue field k whose k points are canonically identified with the A-points of the original scheme. We set

$$\mathbf{\tau}_d = \operatorname{Gr}(\mathbf{T}_d)$$

and

$$\mathfrak{T} = \lim_{\leftarrow} \mathfrak{T}_d.$$

 $\tau$  is a commutative group scheme over  $\mathbb{F}_p$  with  $\tau(\mathbb{F}_p) = \mathbb{Q}_p^{\times}$ , but it is neither connected nor locally of finite type.

A Different Induction Process Greenberg of Néron Character Sheaves

# **Character Sheaves**

- An *ℓ*-adic Weil local system on a scheme X over K is a pair (*L*, φ<sub>L</sub>), where *L* is an *ℓ*-adic local system on the étale site of X<sub>K</sub> and φ<sub>L</sub> is an action of Gal(*K*/K) on *L* compatible with the action on X<sub>K</sub>.
- An *l*-adic Weil character sheaf on a group scheme *G* is an *l*-adic Weil local system *L* on *G* satisfying

$$m^*(\bar{\mathcal{L}}) \cong \bar{\mathcal{L}} \boxtimes \bar{\mathcal{L}}$$

as well as some compatability conditions.

 An ℓ-adic Weil character sheaf on τ is smooth of depth d if it arises as the pullback from τ<sub>d</sub> of an ℓ-adic Weil character sheaf (with d minimal).

A Different Induction Process Greenberg of Néron Character Sheaves

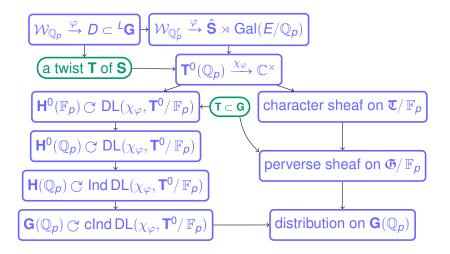
#### Characters and Character Sheaves

#### Theorem

There is a canonical, depth preserving isomorphism between smooth characters of  $\mathbf{T}(\mathbb{Q}_p) = \mathbb{Q}_p^{\times}$  and smooth  $\ell$ -adic Weil character sheaves on  $\mathbf{T}$ .

A Different Induction Process Greenberg of Néron Character Sheaves

#### Summary



David Roe The Local Langlands Correspondence and character sheaves

# References

A Different Induction Process Greenberg of Néron Character Sheaves

- Stephen DeBacker and Mark Reeder. Depth-zero supercuspidal L-packets and their stability. *Annals of Math*, 169(3):795-901, 2009.
- Stephen Gelbart. An elementary introduction to the Langlands program. *Bull. Amer. Math. Soc. (N.S.)*, 10(2):177-219.
- Michael Harris and Richard Taylor. The geometry and cohomology of some simple Shimura varieties. Princeton U.P., Princeton, 2001.
- David Roe. The Local Langlands Correspondence for Tamely Ramified Groups. PhD thesis, Harvard University, 2011.