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Tracking p-adic precision

Xavier Caruso, David Roe and Tristan Vaccon

Abstract

We present a new method to propagate p-adic precision in computations, which also applies to
other ultrametric fields. We illustrate it with many examples and give a toy application to the
stable computation of the SOMOS 4 sequence.
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1. Introduction

The last two decades have seen a rise in the popularity of p-adic methods in computational
algebra. For example,

– Bostan et al. [4] used Newton sums for polynomials over Zp to compute composed products
for polynomials over Fp;

– Gaudry et al. [8] used p-adic lifting methods to generate genus 2 CM hyperelliptic curves;
– Kedlaya [10], Lauder [11] and many followers used p-adic cohomology to count points on

hyperelliptic curves over finite fields;
– Lercier and Sirvent [12] computed isogenies between elliptic curves over finite fields using
p-adic differential equations.

Like real numbers, most p-adic numbers cannot be represented exactly, but instead must
be stored with some finite precision. In this paper we focus on methods for handling p-adic
precision that apply across many different algorithms.

Two sources of inspiration arise when studying p-adic algorithms. The first relates Zp to
its quotients Z/pnZ. The preimage in Zp of an element a ∈ Z/pnZ is a ball, and these balls
cover Zp for any fixed n. Since the projection Zp → Z/pnZ is a homomorphism, given unknown
elements in two such balls we can locate the balls in which their sum and product lie. Working
on a computer we must find a way to write elements using only a finite amount of data. By
lumping elements together into these balls of radius p−n, we may model arithmetic in Zp
using the finite ring Z/pnZ. In this representation, all p-adic elements have constant absolute
precision n.

The second source draws upon parallels between Qp and R. Both occur as completions of Q
and we represent elements of both in terms of a set of distinguished rational numbers. In R,
floating point arithmetic provides approximate operations ⊕ and � on a subset S∞,h ⊂ Z[ 1

2 ]
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that model + and · in R up to a given relative precision h:∣∣∣x~ y

x ∗ y
− 1
∣∣∣ ≤ 2−h

for ∗ ∈ {+, ·} and all x, y ∈ S∞,h with x ∗ y 6= 0. The p-adic analogue defines floating point
operations on Sp,h ⊂ Z[ 1

p ] with ∣∣∣x~ y

x ∗ y
− 1
∣∣∣
p
≤ p−h.

When using floating point arithmetic, elements are represented with a constant relative
precision h.

In both of these models, precision (absolute or relative) is constant across all elements. Since
some operations lose precision, it can be useful to attach a precision to each element. Over
the reals, such interval arithmetic is unwieldy, since arithmetic operations always increase
the lengths of the inputs. As a consequence, most computations in the real numbers rely
on statistical cancelation and external estimates of precision loss, rather than attempting to
track known precision at each step. This tendency is strengthened by the ubiquity of floating
point arithmetic in scientific applications, where Gaussian distributions are more common than
intervals anyway.

In the p-adic world, precision tracking using intervals is much more feasible. Even a long
sequence of operations with such elements may not sacrifice any precision. Intervals allow
number theorists to provably determine a result modulo a given power of p, and the Gaussian
distributions of measurement error over R have no direct analogue over Qp anyway. As a
consequence, interval arithmetic is ubiquitous in implementations of p-adic numbers. The
mathematical software packages Sage [18], PARI [1] and Magma [3] all include p-adic elements
that track precision in this way.

The approach of propagating precision with each arithmetic operation works well, but does
sometimes underestimate the known precision of a result, as we will discuss in Section 2.1.
Moreover, elements of Qp provide building blocks for generic implementations of polynomials,
vector spaces, matrices and power series. The practice of storing the precision within each entry
is not flexible enough for all applications. Sometimes only a rough accounting of precision is
needed, in which case storing and computing the precision of each entry in a large matrix
needlessly consumes space and time. Conversely, recording the precision of each entry does
not allow a constraint such as specifying the precision of f(0), f(1) and f(2) for a quadratic
polynomial f .

For a vector space V over Qp, we propose that the fundamental object used to store the
precision of an element should be a Zp-lattice H ⊂ V . By using general lattices one can
eliminate needless loss of precision. Moreover, specifying the precision of each entry or recording
a fixed precision for all entries can both be interpreted in terms of lattices. In Section 2 we
detail our proposal for how to represent the precision of an element of a vector space.

In Section 3, we develop the mathematical background on which our proposal is based. The
most notable result of this section is Lemma 3.4 which describes how lattices transform under
non-linear maps and allows us to propagate precision using differentials. More specifically, it
describes a class of first order lattices, whose image under a map of Banach spaces is obtained
by applying the differential of that map. In Section 3.2 we make the conditions of Lemma 3.4
more explicit in the case of locally analytic functions.

In Section 4 we propose methods for tracking precision in practice. Section 4.1 includes a
discussion of two models of precision tracking: one-pass tracking, where the precision lattice
is propagated at each step of the algorithm, and two-pass tracking, where an initial pass
computing rough approximations is used in computing the precision lattices. We introduce
precision types in Section 4.2, which allow a tradeoff between flexibility, space and time in
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computing with precision. In Section 4.3, we give an application of these ideas to an algorithm
for computing terms of the SOMOS sequence.

In Appendix A, we extend the results of Section 3 to p-adic manifolds, describing how
to specify precisions for points on elliptic curves and Grassmannians. Finally, Appendix B
describes how to compute the derivative of some common operations on matrices as an example,
with an eye toward applying Lemma 3.4.

2. Precision proposals

2.1. Problems in precision

The usual way to track p-adic precision consists in replacing p-adic numbers by approximate
elements of the form a+O(pN ) and performing all usual arithmetical operations on these
approximations. We offer below three examples that illustrate cases where this way to track
precision does not yield optimal results.

A linear map. Consider the function f : Q2
p → Q2

p mapping (x, y) to (x+ y, x− y) and
the problem of computing f ◦ f(a+O(pn), b+O(pm)). Applying f twice, computing precision
with each step, yields

(
2a+O(pmin(m,n)), 2b+O(pmin(m,n))

)
. On the other hand, f ◦ f(x, y) =

(2x, 2y), so one may compute the result more accurately as (2a+O(pn), 2b+O(pm)), with
even more precision when p = 2.

SOMOS 4. The SOMOS 4 sequence [17] is defined by the recurrence

un =
un−3un−1 + u2

n−2

un−4
.

We shall consider the case where the initial terms u0, u1, u2 and u3 lie in Z×p and have precision
O(pN ). Let us first examine how the absolute precision of un varies with n if it is computed
from the precision of un−4, . . . , un−1 using the recurrence. The computation of un involves a
division by un−4 and hence, roughly speaking, decreases the precision by a factor pval(un−4).
Hence the step-by-step computation returns the value of un with precision

O(pN−vn) with vn = val(u0) + · · ·+ val(un−4). (2.1)

On the other hand, one can prove that the SOMOS 4 sequence exhibits the Laurent
phenomenon [7]: for all integer n, there exists a polynomial Pn in Z[X±1, Y ±1, Z±1, T±1] such
that un = Pn(u0, u1, u2, u3). From the latter formula and our assumption that u0, u1, u2 and
u3 are units known up to precision O(pN ), it follows that all un’s are known with the same
precision. Thus, the term vn that appears in (2.1) does not reflect an intrinsic loss of precision
but some numerical instability related to the algorithm used to compute un.

Remark 2.1. From the above discussion, one can easily derive a numerically stable
algorithm that computes the SOMOS 4 sequence:
(i) compute the polynomials Pn using the recurrence in the ring Z[X±1, Y ±1, Z±1, T±1]

(ii) evaluate Pn at the point (u0, u1, u2, u3).
However, computing the Pn’s is very time-consuming since it requires division in a polynomial
ring with 4 variables and the size of the coefficients of Pn explodes as n grows.

In Section 4.3, we shall design an algorithm computing the SOMOS 4 sequence which turns
out to be, at the same time, efficient and numerically stable.
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LU factorization. Let us first recall that a square matrix M admits a LU factorization if
it can be written as a product LU where L and U are lower triangular and upper triangular
respectively. The computation of a LU factorization appears as an important tool to tackle
many classical questions about matrices or linear systems, and is discussed further in Appendix
B. When computing the entries of L and U from a d× d matrix over Zp with entries of precision
O(pN ), one has a choice of algorithms:

– using usual Gaussian elimination and tracking p-adic precision step-by-step, the smallest

precision on an entry of L(M) is about O(pN−
2d

p−1 ) on average;
– computing L(M) by evaluating Cramer-type formulae yields a result whose every entry is

known up to precision O(pN−2 logp d) [5].
If d is large compared to p, the second precision is much more accurate than the first one. On
the other hand, the Cramer-type formulae in the second algorithm yield a substantially longer
running time than the first.

2.2. Lattices

In order to make our proposals for tracking precision clear, we need some definitions from
ultrametric analysis. See Schneider [16] for a more complete exposition.

Let K be a field with absolute value | · | : K → R≥0. We assume that the induced metric is an
ultrametric (i.e. |x+ y| ≤ max(|x|, |y|)) and that K is complete with respect to it. For example,
we may take K = Qp with the p-adic absolute value or K = k((t)) with the t-adic absolute value.
Write OK for the ring {x ∈ K : |x| ≤ 1} and assume that K contains a computable dense
subring R ⊂ K [14]. This assumption holds for K = Qp and K = Fp((t)) by setting R = Z[ 1

p ]

or R = Q in the case of Qp and R = Fp[t, t−1] or R = Fp(t) in the case of Fp((t)).
If E is a K-vector space, possibly of infinite dimension, then an ultrametric norm on E is a

map ‖ · ‖ : E → R+ satisfying:
(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖λx‖ = |λ| · ‖x‖;
(iii) ‖x+ y‖ ≤ max(‖x‖, ‖y‖).
A K-Banach space is a complete normed K-vector space. Note that any finite-dimensional
normed K-vector space is automatically complete and all norms over such a space are
equivalent. A lattice in a K-Banach space E is an open bounded sub-OK-module of E. We
underline that any lattice H in E is also closed since its complement is the union of all cosets
a+H (with a 6∈ H) which are all open. For a K-Banach space E and r ∈ R≥0, write

BE(r) = {x ∈ E : ‖x‖ ≤ r}, B−E (r) = {x ∈ E : ‖x‖ < r}.

Note that BE(r) and B−E (r) are both lattices. We will also set BE(∞) = B−E (∞) = E.
Suppose E is a K-Banach space and I a set. A family (xi)i∈I ⊂ E is a Banach basis for E if

every element x ∈ E can be written x =
∑
i∈I αixi for scalars αi ∈ K with αi → 0 (according

to the filter of cofinite subsets), and ‖x‖ = supi∈I |αi|. Note that if E is finite dimensional then
the condition αi → 0 is vacuous.

Given a basis (xi)i∈I and a sequence (ri)i∈I with ri ∈ R>0, the sets

BE((xi), (ri)) =
{∑
i∈I

αixi : |αi| ≤ ri
}
,

B−E ((xi), (ri)) =
{∑
i∈I

αixi : |αi| < ri

}
are lattices precisely when the ri are bounded. If we have equipped E with a distinguished
basis then we may drop (xi) from the notation for B

(−)
E ((xi), (ri)).

Approximate elements. Suppose that E is a K-Banach space with basis (xi)i∈I .
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Definition 2.2.
– An element x ∈ E is exact if there is a finite subset J ⊆ I and scalars αj ∈ R with

x =
∑
j∈J

αjxj . (2.2)

– An approximate element is a pair (x,H) where x ∈ E is an exact element and H is a
lattice in E.

The pair (x,H) represents an undetermined element of the coset x+H. We will frequently
write x+O(H) to emphasize the fact that H represents the uncertainty in the value of the
approximate element. In the special case that E = K = Qp, we recover the standard notation
a+O(pn) for an approximate p-adic element. Note that the set of exact elements is dense in
E, so every element of E can be approximated.

Lattices and computers. Suppose that E ' Kd is finite dimensional. Then if H ⊂ E is a
lattice then there exist a, b ∈ Q>0 with

BK(a)d ⊂ H ⊂ BK(b)d. (2.3)

Set r = a
b and Rr = OK/BK(r). Then a lattice H satisfying (2.3) is uniquely determined by

its image in the quotient BK(b)d/BK(a)d ' Rdr . Since R ∩ OK is dense in OK , elements of Rr
may be represented exactly. Thus H may be encoded as a (d× d) matrix with coefficients in
Rr. For example, when K = Qp the ring Rr is just (Z/pnZ) for n = b− logp rc.

2.3. Separating precision from approximation

Definition 2.2 encapsulates the two main practical suggestions of this paper with regards to
representing vector spaces, matrices, polynomials and power series over K:

(1) one should separate the approximation from the precision,
(2) the appropriate object to represent precision is a lattice.

In the rest of this section we discuss some of the benefits made possible these choices.
Note first that using an arbitrary lattice to represent the precision of an approximate element

can reduce precision loss when compared to storing the precision of each coefficient αi in (2.2)
separately. Recall the map f : (x, y) 7→ (x+ y, x− y) from the beginning of the section, and
write (e1, e2) for the standard basis of E = Q2

p. Since f is linear, the image of the approximation(
(a, b), BE

(
(e1, e2), (p−n, p−m)

))
is
(
(a+ b, a− b), BE

(
(e1 + e2, e1 − e2), (p−n, p−m)

))
. For p 6=

2, applying f again yields
(
(2a, 2b), BE

(
(e1, e2), (p−n, p−m)

))
. By using lattices one eliminates

the loss of precision seen previously. We shall see in the next section that a similar phenomenon
occurs for non-linear mappings as well.

In addition to allowing for a more flexible representation of the precision of an element,
the separation of precision from approximation has other benefits as well. If the precision
is encoded with the approximation, certain algorithms become unusable because of their
numerical instability. For example, the Karatsuba algorithm for polynomial multiplication [9]
can needlessly lose precision when operating on polynomials with inexact coefficients. However,
it works perfectly well on exact approximations, leaving the question of the precision of the
product to be solved separately. By separating the precision, more algorithms become available.

3. Lattices and differentials

Our theory of p-adic precision rests upon a lemma in p-adic analysis: Lemma 3.4. This section
develops the theory surrounding this result; we proceed to practical consequences in Section 4.
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3.1. Images of lattices under differentiable functions

Our goal in this section is to relate the image of a lattice under a differentiable map to its
image under the derivative.

Definition 3.1. Let E and F be two K-Banach spaces, let U be an open subset of E and
let f : U → F be a map. Then f is called differentiable at v0 ∈ U if there exists a continuous
linear map f ′(v0) : U →W such that for any ε > 0, there exists an open neighborhood Uε ⊂ U
containing v0 with

‖f(v)− f(w)− f ′(v0) (v − w) ‖ ≤ ε‖v − w‖.

for all v, w ∈ Uε. The linear map f ′(v0) is called the differential of f at v0.

Remark 3.2. This notion of differentiability is sometimes called strict differentiability; it
implies that the function x 7→ f ′(x) is continuous on U .

Definition 3.3. Let E and F be two K-Banach spaces, f : U → F be a function defined
on an open subset U of E and v0 be a point in U . A lattice H in E is called a first order lattice
for f at v0 if v0 +H ⊂ U and the following equality holds:

f(v0 +H) = f(v0) + f ′(v0)(H). (3.1)

We emphasize that we require an equality in (3.1), and not just an inclusion! With this
definition in hand, we are able to state our main lemma.

Lemma 3.4. Let E and F be two K-Banach spaces and f : U → F be a function defined
on an open subset U of E. We assume that f is differentiable at some point v0 ∈ U and that
the differential f ′(v0) is surjective.

Then, for all ρ ∈ (0, 1], there exists a positive real number δ such that, for all r ∈ (0, δ), any
lattice H such that B−E (ρr) ⊂ H ⊂ BE (r) is a first order lattice for f at v0.

Proof. Without loss of generality, v0 = 0 and f(0) = 0. Since f ′(0) is surjective, the open
mapping theorem provides a C > 0 such that BF (1) ⊂ f ′(0)(BE(C)). Let ε > 0 be such that
εC < ρ, and choose Uε ⊂ E as in Definition 3.1. We may assume Uε = BE(δ) for some δ > 0.

Let r ∈ (0, δ). We suppose that H is a lattice with B−E (ρr) ⊂ H ⊂ BE (r). We seek to show
that f maps H surjectively onto f ′(0)(H). We first prove that f(H) ⊂ f ′(0)(H). Suppose
x ∈ H. By differentiability at 0, ‖f(x)− f ′(0)(x)‖ ≤ ε‖x‖. Setting y = f(x)− f ′(0)(x), we have
‖y‖ ≤ εr. The definition of C implies that BF (εr) ⊂ f ′(0)(BE(εrC)). Thus there exists x′ ∈
BE(εrC) such that f ′(0)(x′) = y. Since εC < ρ, we get x′ ∈ B−E (ρr) ⊂ H and then f(x) =
f ′(0)(x− x′) ∈ f ′(0)(H).

We now prove surjectivity. Let y ∈ f ′(0)(H). Let x0 ∈ H be such that y = f ′(0)(x0). We
inductively define two sequences (xn) and (zn) as follows:

– zn is an element of E satisfying f ′(0)(zn) = y − f(xn) and ‖zn‖ ≤ C · ‖y − f(xn)‖ (such
an element exists by definition of C), and

– xn+1 = xn + zn.

For convenience, let us also define x−1 = 0 and z−1 = x0. We claim that the sequences (xn)
and (zn) are well defined and take their values in H. We do so by induction, assuming that
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xn−1 and xn belong to H and showing that zn and xn+1 do as well. Noticing that

y − f(xn) = f(xn−1) + f ′(0)(zn−1)− f(xn)

= f(xn−1)− f(xn)− f ′(0)(xn−1 − xn)
(3.2)

we deduce using differentiability that ‖y − f(xn)‖ ≤ ε · ‖xn − xn−1‖. Since we are assuming
that xn−1 and xn lie in H ⊂ BE(r), we find ‖y − f(xn)‖ ≤ εr. Thus ‖zn‖ ≤ C · εr < ρr and
then zn ∈ H. From the relation xn+1 = xn + zn, we finally deduce xn+1 ∈ H.

Using (3.2) and differentiability at 0 once more, we get

‖y − f(xn)‖ ≤ ε · ‖zn−1‖ ≤ εC · ‖y − f(xn−1)‖,

for all n > 0. Therefore, ‖y − f(xn)‖ = O(an) and ‖zn‖ = O(an) for a = εC < ρ ≤ 1. These
conditions show that (xn) is a Cauchy sequence, which converges since E is complete. Write
x for the limit of the xn; we have x ∈ H because H is closed. Moreover, f is continuous on
H ⊆ Uε since it is differentiable, and thus y = f(x).

We end this section with a remark on the surjectivity of f ′(v0) assumed in Lemma 3.4.
First, let us emphasize that this hypothesis is definitely necessary. Indeed, the lemma would
otherwise imply that the image of f is locally contained in a proper sub-vector-space around
each point where the differential of f is not surjective, which is certainly not true! Nevertheless,
one can use Lemma 3.4 to prove a weaker result in the context that f ′(v0) is not surjective.
To do so, choose a closed sub-vector-space W of F such that W + f ′(v0)(E) = F . Denoting
by prW the canonical projection of F onto F/W , the composite prW ◦f is differentiable at v0

with surjective differential. For a given lattice H, there will be various choices of W to which
Lemma 3.4 applies. For each such W ,

f(v0 +H) ⊂ f(v0) + f ′(v0)(H) +W ; (3.3)

taking the intersection of the right hand side over many W yields an upper bound on f(v0 +H).

3.2. The case of locally analytic functions

In this section we make the constant δ in Lemma 3.4 explicit, under the additional assumption
that f is locally analytic. We extend the definition of such functions from finite-dimensional
K-vector spaces [16, §6] to K-Banach spaces.

Definition 3.5. Let E and F be K-Banach spaces. Let U be an open subset of E and let
x ∈ U . A function f : U → F is said to be locally analytic at x if there exists an open subset
Ux ⊂ E and continuous n-linear maps Ln : En → F for n ≥ 1 such that

f(x+ h) = f(x) +
∑
n≥1

Ln(h, . . . , h)

for all h with x+ h ∈ Ux.

Remark 3.6. A function f which is locally analytic at x is a fortiori differentiable at x,
with derivative given by L1.

For the rest of this section, we assume that K is algebraically closed. As in Definition 3.5, we
consider two K-Banach spaces E and F and a family of continuous n-linear maps Ln : En → F .
For n ≥ 1 and h ∈ E, we set fn(h) = Ln(h, . . . , h) and

‖fn‖ = sup
h∈BE(1)

‖fn(h)‖.
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When the series
∑
n fn(h) converges, we denote by f(h) its sum; we shall write f =

∑
n≥0 fn.

We assume that f is defined in a neighborhood of 0. Under this assumption, the datum of f
uniquely determines the fn’s (a consequence of Proposition 3.9 below). To such a series f , we
attach the function Λ(f) : R ∪ {+∞} → R ∪ {+∞} defined by:

Λ(f)(v) =

{
log
(

suph∈B−E (ev) ‖f(h)‖
)

if f is defined onB−E (ev),

+∞ otherwise.

The following lemma is easy and left to the reader.

Lemma 3.7. Let f =
∑
n≥0 fn and g =

∑
n≥0 gn be two series as above. Then

Λ(f + g) ≤ max(Λ(f),Λ(g)),

Λ(f × g) ≤ Λ(f) + Λ(g),

Λ(f ◦ g) ≤ Λ(f) ◦ Λ(g).

Remark 3.8. Using Lemma 3.7, one can easily derive an upper bound of Λ(f) from a
formula describing f .

The function Λ(f) we have just defined is closely related to the Newton polygon of f .
Recall that the Newton polygon of f is the convex hull in R2 of the points (n,− log‖fn‖)
for n ≥ 0, together with the extra point (0,+∞). We denote by NP(f) : R→ R ∪ {+∞} the
convex function whose epigraph is the Newton polygon of f .

We recall that the Legendre transform of a convex function ϕ : R→ R ∪ {+∞} is the
function ϕ? : R→ R ∪ {+∞} defined by

ϕ?(v) = supu∈R
(
uv − ϕ(u)

)
,

for v ∈ R. One can check that the map ϕ 7→ ϕ? is an order-reversing involution: (ϕ?)? = ϕ and
ϕ? ≥ ψ? whenever ϕ ≤ ψ. When necessary, we extend ϕ? to R ∪ {+∞} by left continuity. We
refer to [15] for a complete exposition on Legendre transforms.

Proposition 3.9. Keeping the above notation, we have Λ(f) = NP(f)?.

Proof. Note that the functions Λ(f) and NP(f)? are both left continuous. It is then enough
to prove that they coincide expect possibly on the set of slopes of NP(f), a dense subset of R.

Let v ∈ R, not a slope of NP(f). We assume first that NP(f)?(v) is finite. We set u =
NP(f)∗(v). The function m 7→ NP(f)(m)− vm+ u has the following properties:
(i) it is piecewise affine and everywhere nonnegative,

(ii) it does not admit 0 as a slope and
(iii) it vanishes at x = n for some integer n and u = vn+ log ‖fn‖.
We deduce from these facts that there exists c > 0 such that

vm− u ≤ − log‖fm‖ − c · |n−m|

for any m ≥ 0. Since vm− u = vm− vn− log‖fn‖, we get

−vn− log‖fn‖+ c · |n−m| ≤ −vm− log‖fm‖.

Therefore, for any x ∈ BE(ev) and m ≥ 0, we have

‖fm(x)‖ ≤ e−c·|n−m| · ‖fn‖ · evn ≤ ‖fn‖ · evn.
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Thus, the series
∑
m≥0 fm(x) converges and ‖f(x)‖ ≤ ‖fn‖ · evn. We then get

Λ(f)(v) ≤ log
(
‖fn‖evn

)
= vn+ log ‖fn‖ = u. (3.4)

On the other hand, it follows from the definition of ‖fn‖ and the fact that |K×| is dense
in R (K is algebraically closed) that there exists a sequence (xi)i≥0 in B−E (ev) such that
limi→∞ ‖fn(xi)‖ = ‖fn‖ · evn. Since ‖fm(xi)‖ ≤ e−c·|n−m| · ‖fn‖ · evn for all m and i, we get
‖fm(xi)‖ < ‖fn(xi)‖ for i large enough. For these i, we then have ‖f(xi)‖ = ‖fn(xi)‖. Passing
to the limit on i, we find Λ(f)(v) ≥ u. Comparing with (3.4), we get Λ(f)(v) = u = NP(f)?(v).

We now assume that NP(f)?(v) = +∞. The function x 7→ NP(f)(x)− vx is then not
bounded from below. Since it is convex, it goes to −∞ when x goes to +∞. By the definition of
NP(f), the expression vn+ log ‖fn‖ goes to infinity as n grows. It is then enough to establish
the following claim:

∀n ∈ N, Λ(f)(v) ≥ vn+ log ‖fn‖ − log 2. (3.5)

Let n be a fixed integer. If ‖fn‖ = 0, there is nothing to prove. Otherwise, we consider an
element xn ∈ B−E (ev) such that ‖fn(xn)‖ ≥ 1

2‖fn‖ · e
vn. If the series

∑
m≥0 fm(xn) diverges,

then Λ(f)(v) = +∞ by definition and Eq. (3.5) holds. On the other hand, if it converges, the
sequence ‖fm(xn)‖ goes to 0 as m goes to infinity. Hence it takes its maximum value R a finite
number of times; let us denote by I ⊂ N the set of the corresponding indices. For any λ ∈ OK ,
the series defining f(λxn) converges and

f(λxn) ∈ BF (R) and f(λxn) ≡
∑
m∈I

λmfm(xn) (mod B−F (R)).

The quotient BF (R)/B−F (R) is a vector space over the residue field k of K. Since k is infinite,
there must exist λ ∈ OK such that

∑
m∈I λ

mfm(xn) does not vanish in BF (R)/B−F (R). For
such an element λ, we have ‖f(λxn)‖ = R ≥ 1

2‖fn‖ · e
vn. The claim (3.5) follows.

Remark 3.10. It follows from Proposition 3.9 that Λ(f) is a convex function.

We now study the effect of truncation on series: given f as above and a nonnegative integer
n0, we set

f≥n0
=
∑
n≥n0

fn = f − (f0 + f1 + · · ·+ fn0−1).

On the other hand, given a convex function ϕ : R→ R ∪ {+∞} and a real number v, we define
ϕ≥v : R→ R ∪ {±∞} by

ϕ≥v(x) = inf
y≥0

(
ϕ(x+ y)− vy

)
.

The function ϕ≥v is the maximum among all functions ϕ′ with ϕ′ ≤ ϕ and x 7→ ϕ′(x)− vx
nondecreasing. When v is fixed, the construction ϕ 7→ ϕ≥v is nondecreasing: if ϕ and ψ are
two convex functions such that ϕ ≤ ψ then ϕ≥v ≤ ψ≥v.

Proposition 3.11. With the above notations, we have Λ(f≥n0
) ≤ Λ(f)≥n0

for all n0 ∈ N.

Proof. It follows easily from Proposition 3.9 and the fact that the slopes of the Legendre
transform of a convex piecewise affine function f are exactly the abscissae of the points where
f is not differentiable.

We may now provide two sufficient conditions to effectively recognize first order lattices.
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Proposition 3.12. Let f =
∑
n≥0 fn be a function as above. Let C be a positive real

number satisfying BF (1) ⊂ f1(BE(C)). Let ρ ∈ (0, 1] and ν be a real number such that

Λ(f)≥2(ν) < ν + log
( ρ
C

)
. (3.6)

Then the conclusion of Lemma 3.4 holds with δ = eν .

Remark 3.13. On a neighborhood of −∞, the function x 7→ Λ(f)≥2(x)− x is affine with
slope 1. This implies that, for all ρ ∈ (0, 1], there exists ν satisfying (3.6). Moreover, if ρ is
close enough to 0, then one can take δ = eν as a linear function of ρ.

Remark 3.14. In the statement of Proposition 3.12, one can of course replace the function
Λ(f) by any convex function ϕ with ϕ ≥ Λ(f). If f is given by some formula or some algorithm,
such a function ϕ can be obtained using Remark 3.8.

Proof. Pick ε in the interval (eΛ(f)≥2(ν)−ν , ρC ). Going back to the proof of Lemma 3.4, we
observe that it is enough to prove that

‖f≥2(x)‖ ≤ ε · ‖x‖. (3.7)

for all x ∈ BE(δ). This inequality follows from Propositions 3.9 and 3.11 applied to the function

x 7→ Λ≥2(x)

x .

Remark 3.15. It follows from the proof that Proposition 3.12 is still valid if K is not
assumed to be algebraically closed. Indeed, the functions fn — and then f also — extend to
an algebraic closure K̄ of K and (3.7) holds over K̄, which is enough to conclude the result.

Corollary 3.16. We keep the notations of Proposition 3.12 and consider in addition a
sequence (Mn)n≥2 such that ‖fn‖ ≤Mn for all n ≥ 2. Let NP(Mn) denote the convex function
whose epigraph is the convex hull in R2 of the points of coordinates (n,− logMn) for n ≥ 2
together with the extra point (0,+∞).

Let ρ ∈ (0, 1] and ν be a real number such that

NP (Mn)?(ν) < ν + log
( ρ
C

)
.

Then the conclusion of Lemma 3.4 holds with δ = eν .

Remark 3.17. If K has characteristic 0 and the vector spaces E and F are finite
dimensional, then the Mn’s defined by

Mn =
1

|n!|
· sup

1≤i≤dimE
|n|=n

∥∥∥∂nfi
∂xn

(0)
∥∥∥

do the job. Here fi denotes the i-th coordinate of f , the notation n refers to a tuple of (dimF )
nonnegative integers and |n| is the sum of the coordinates of n.

4. Precision in practice

In this section we discuss applications of Lemma 3.4 and Proposition 3.12 to effective
computations with p-adic numbers and power series.
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4.1. Optimal precision tracking

We consider a function f (in the sense of computer science) that takes as input an
approximate element lying in an open subset U of a K-Banach space E and outputs another
approximate element lying in an open subset V of another K-Banach space F . In applications,
this function models a continuous mathematical function f : U → V : when f is called on the
input x+O(H), it outputs x′ +O(H ′) with f(x+H) ⊆ x′ +H ′. We say that f preserves
precision if the above inclusion is an equality; it is often not the case as shown in Section 2.1.

Let us assume now that f is locally analytic on U and that f ′(x) is surjective. Proposition
3.12 then yields a rather simple sufficient condition to decide if a given lattice H is a first order
lattice for f at x. For such a lattice, by definition, we have f(x+H) = f(x) + f ′(x)(H) and
thus f must output O(f ′(x)(H)) if it preserves precision. In this section we explain how, under
the above hypothesis, one can implement the function f so that it always outputs the optimal
precision.

One-pass computation. The execution of the function f yields a factorization:

f = fn ◦ fn−1 ◦ · · · ◦ f1

where the fi’s correspond to each individual basic step (like addition, multiplication or creation
of variables); they are then “nice” (in particular locally analytic) functions. For all i, let Ui
denote the codomain of fi. Of course Ui must contains all possible values of all variables which
are defined in the program after the execution of the i-th step. Mathematically, we assume that
it is an open subset in some K-Banach space Ei. We have Un = V and the domain of fi is Ui−1

where, by convention, we have set U0 = U . For all i, we set gi = fi ◦ · · · ◦ f1 and xi = gi(x).
When we execute the function f on the input x+O(H), we apply first f1 to this input

obtaining this way a first result x1 +O(H1) and then go on with f2, . . . , fn. At each step,
we obtain a new intermediate result that we denote by xi +O(Hi). A way to guarantee that
precision is preserved is then to ensure Hi = f ′i(x)(Hi−1) = g′i(x)(H) at each step. This can
be achieved by reimplementing all primitives (addition, multiplication, etc.) and make them
compute at the same time the function fi they implement together with its differential and
apply the latter to the “current” lattice Hi.

There is nevertheless an important issue with this approach: in order to be sure that Lemma
3.4 applies, we need a priori to compute the exact values of all xi’s, which is of course not
possible! Assuming that g′i(x) is surjective for all i, we can fix it as follows. For each i, we fix
a first order lattice H̃i for gi at x. Under our assumption, such lattices always exist and can
be computed dynamically using Proposition 3.12 and Lemma 3.7 (see also Remark 3.8). Now,
the equality gi(x+ H̃i) = xi + g′i(x)(H̃i) means that any perturbation of xi by an element in
g′i(x)(H̃i) is induced by a perturbation of x by an element in H̃i ⊂ H. Hence, we can freely
compute xi modulo g′i(x)(H̃i) without changing the final result. Since g′i(x)(H̃i) is a lattice in
Ei, this remark makes possible the computation of xi.

Remark 4.1. In some cases, it is actually possible to determine suitable lattices H̃i together
with their images under g′i(x) (or, at least, good approximations of them) before starting the
computation by using mathematical arguments. If possible, this generally helps a lot. We shall
present in §4.3 an example of this.

Two-pass computation. The previous approach works only if the g′i(x)’s are all surjective.
Unfortunately, this assumption is in general not fulfilled. Indeed, remember that the dimension
of Ei is roughly the number of used variables after the step i. If all g′i(x) were surjective, this



Page 12 of 21 XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON

would mean that the function f never initializes a new variable! In what follows, we propose
another solution that does not assume the surjectivity of g′i(x).

For i ∈ {1, . . . , n}, define hi = fn ◦ · · · ◦ fi+1, so that we have f = hi ◦ gi. On differentials,
we have f ′(x) = h′i(xi) ◦ g′i(x). Since f ′(x) is surjective (by assumption), we deduce that h′i(xi)
is surjective for all i. Let H ′i be a lattice in Ei such that:
(a) H ′i is contained in Hi + kerh′i(xi) = h′i(xi)

−1
(
f ′(x)(H)

)
;

(b) H ′i is a first order lattice for hi at xi.
By definition, we have hi(xi +H ′i) = xn + h′i(xi)(H

′
i) ⊂ xn + f ′(x)(H). Therefore, modifying

the intermediate value xi by an element of H ′i after the i-th step of the execution of f leaves
the final result unchanged. In other words, it is enough to compute xi modulo H ′i.

It is nevertheless not obvious to implement these ideas in practice because when we enter in
the i-th step of the execution of f, we have not computed hi yet and hence are a priori not
able to determine a lattice H ′i satisfying the axioms (a) and (b) above. A possible solution to
tackle this problem is to proceed in several stages as follows:
(1) for i from 1 to n, we compute xi, f

′
i(xi−1) at small precision (but enough for the second

step) together with an upper bound of the function Λ(h 7→ fi(xi−1 + h)− fi(xi−1));
(2) for i from n to 1, we compute h′i(xi) and determine a lattice H ′i satisfying (a) and (b);
(3) for i from 1 to n, we recompute xi modulo H ′i and finally outputs xn +O

(
f ′(x)(H)

)
.

Using relaxed algorithms for computing with elements in K (cf [2, 20, 21]), we can reuse in
Step (3) the computations already performed in Step (1). The two-pass method we have just
presented is then probably not much more expensive than the one-pass method, although it is
more difficult to implement.

We conclude this section by remarking that the two-pass method seems to be particularly
well suited to computations with lazy p-adics. In this setting, a target precision is fixed and the
software determines automatically the precision it needs on the input to achieve this output
precision. To do this, it first builds the “skeleton” of the computation (i.e. it determines the
functions fi and eventually computes the xi at small precision when branching points occur
and it needs to decide which branch it follows) and then runs over this skeleton in the reverse
direction in order to determine (an upper bound of) the needed precision at each step.

Non-surjectivity. From the beginning, we have assumed that f ′(x) is surjective. Let us
discuss shortly what happens when this assumption is relaxed. As it is explained after the
proof of Lemma 3.4, the first thing we can do is to project the result onto different quotients,
i.e. to work with the composites prW ◦f for a sufficiently large family of closed sub-vector-
spaces W ⊂ F such that W + f ′(x)(E) = F . If F has a natural system of coordinates, we
may generally take the prW ’s as the projections on each coordinate. Doing this, we end up
with a precision on each individual coordinate. Furthermore, we have the guarantee that each
coordinate-wise precision is sharp, even if the lattice built from them is not.

Let us illustrate the above discussion by an example: suppose that we want to compute
the function f : (Kn)n →Mn(K) that takes a family of n vectors to its Gram matrix. The
differential of f is clearly never surjective because f takes its values in the subspace consisting
of symmetric matrices. Nevertheless, for all pairs (i, j) ∈ {1, . . . , n}2, one can consider the
composite fij = prij ◦f where prij : Mn(K)→ K takes a matrix M to its (i, j)-th entry. The
maps fij ’s are differentiable and their differentials are generically surjective. Let M be a matrix
known at some finite precision such that f ′ij(M) 6= 0 for all (i, j). We can then apply a one-
or two-pass computation and get fij(M) together with its precision. Putting this together, we
get the whole matrix f(M) together with a sharp precision datum on each entry.

The study of this example actually suggests another solution to tackle the issue of non-
surjectivity. Indeed, we remark that our f above did not have a surjective differential simply
because its codomain was too large: replacing the codomain with the K-vector space Sn(K)
of n× n symmetric matrices over K makes the differential of f surjective. While the image of
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a general f is rarely a sub vector space of F , it is often a sub-K-manifold of F . We can then
use the results of Appendix A to study f : U → f(U), which likely has surjective differential.

Quick comparison with floating point arithmetic. The two strategies described above share
some similarities with standard floating point arithmetic over the reals. In each setting, we begin
by choosing a large precision for all computations, and when we encounter an unconstrained
digit we choose it “at random” or using good heuristics. However, in the ultrametric setting,
mild hypotheses allow us to quantify the precision needed at each individual step in order to
ensure a specified final precision.

4.2. Precision Types

Using an arbitrary lattice to record the precision of an approximate element has the benefit
of allowing computations to proceed without unnecessary precision loss using Lemma 3.4.
However, while recording a lattice exactly is possible it does require a lot of space. For example,
the space required to store a lattice precision for a single n× n matrix with entries of size O(pN )
is O(Nn4 · log p). Conversely, the space needed to record that every entry has precision O(pN )
is just O(logN).

Definition 4.2. Suppose that E is a K-Banach space, and write Lat(E) for the set of
lattices in E. A precision type for a K-Banach space E is a set T ⊆ Lat(E) together with a
function round : Lat(E)→ T such that
(∗) For every lattice H ∈ Lat(E), the lattice round(H) is a least upper bound for H under

the inclusion order: H ⊆ round(H) and if T ∈ T satisfies T ⊂ round(H) then H 6⊆ T .

Different precision types are appropriate for different problems. For example, the final step of
Kedlaya’s algorithm for computing zeta functions of hyperelliptic curves [10, §4: Step 3] involves
taking the characteristic polynomial of the matrix of Frobenius acting on a p-adic cohomology
space. Obtaining extra precision on the entries of the matrix requires a long computation, so
it is advisable to work with a precision type that does not round too much.

The following list gives examples of useful precision types. A description of the round function
has been omitted for brevity.

– The lattice precision type has T = Lat(E).
– In the jagged precision type, T consists of lattices of the shape BE((ei), (ri)) for a fixed

Banach basis (ei) of E.
– In the flat precision type, T consists of lattices BE(r). The flat precision type is useful

since it takes so little space to store and it easy to compute with.
– If E = K<d[X] is the space of polynomials of degree less than d, the Newton precision type

consists of lattices BE((Xi), (ri)) where − log ri is a convex function of i. The Newton
precision type is sensible if one thinks of polynomials as functions K → K, since extra
precision above the Newton polygon never increases the precision of an evaluation.

– If E = Mm×n(K), the column precision type consists of lattices with identical image under
all projections pri : E → Km sending a matrix to its ith column. It is appropriate when
considering linear maps where the image of each basis vector has the same lattice precision.

– If E = QpJXK, the Pollack-Stevens precision type consists of lattices of the form HN :=
BE((Xi), (pmin(i−N,0))) [13, §1.5]. These lattices are stable under certain Hecke operators,
which is necessary for computing with overconvergent modular symbols.

Note that sometimes the precision of a final result can be computed a priori (using the
methods of Appendix B for example). Taking advantage of such knowledge can minimize
artificial precision loss even when using rougher precision types such as flat or jagged.
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Algorithm 1: SOMOS(a, b, c, d, n,N)

Input: a, b, c, d — four initial terms of a SOMOS 4 sequence (un)n≥0

Input: n,N — two integers
Assumption: a, b, c and d lie in Z×p and are known at precision O(pN )
Assumption: None of the ui (0 ≤ i ≤ n) is divisible by pN

Output: un at precision O(pN )

1 prec ← N ;
2 for i from 1 to n− 3 do
3 prec ← prec + vp(bd+ c2);
4 lift b, c and d arbitrarily to precision O(pprec);
5 prec ← prec− 2 vp(a);

6 e ← bd+c2

a ; // e is known at precision O(pprec)
7 a, b, c, d ← b+O(pprec), c+O(pprec), d+O(pprec), e;

8 return d+O(pN );

Separating precision from approximation also makes it much easier to implement algorithms
capable of processing different precision types, since one can implement the arithmetic of the
approximation separately from the logic handling the precision.

4.3. Application to SOMOS sequence

We illustrate the theory developed above by giving a simple toy application. Other
applications will be discussed in subsequent articles. More precisely, we study the SOMOS
4 sequence introduced in §2.1. Making a crucial use of Lemma 3.4 and Proposition 3.12, we
design a stable algorithm for computing it.

Recall from §2.1 that a SOMOS 4 sequence is a four-term inductive sequence defined by un =
un−3un−1+u2

n−2

un−4
exhibiting the Laurent phenomenon. We will focus on SOMOS sequences with

values in Qp, and assume for simplicity that u0, u1, u2, u3 ∈ Z×p . By the Laurent phenomenon,
un ∈ Zp for all n, and if u0, u1, u2, u3 are known with finite precision O(pN ) then all un are
known with the same absolute precision. Algorithm 1 presented on page 14 performs this
computation.

We now prove that it is correct. We introduce the function f : Q×p ×Q3
p → Q4

p defined by

f(a, b, c, d) = (b, c, d, bd+c2

a ). For all i, we have (ui, ui+1, ui+2, ui+3) = fi(u0, u1, u2, u3) where
fi = f ◦ · · · ◦ f (i times). Clearly, f is differentiable on Q×p ×Q3

p and its differential in the
canonical basis is given by the matrix:

D(a, b, c, d) =


0 1 0 0
0 0 1 0
0 0 0 1

− bd+c2

a2
d
a

2c
a

b
a


whose determinant is bd+c2

a2 . Thus, if the (i+ 4)-th term of the SOMOS sequence is defined,
the mapping fi is differentiable at (u0, u1, u2, u3) and its differential ϕi = f ′i(u0, u1, u2, u3) is
given by the matrix Di = D(ui−1, ui, ui+1, ui+2) · · ·D(u1, u2, u3, u4) ·D(u0, u1, u2, u3). Thanks
to the Laurent phenomenon, we know that Di has integral coefficients, i.e. ϕi stabilizes the
lattice Z4

p. We are now going to prove by induction on i that, at the end of the i-th iteration
of the loop, we have prec = N + vp(detDi) and

(a, b, c, d) ≡ (ui, ui+1, ui+2, ui+3) (mod pNϕi(Z4
p)). (4.1)
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The first point is easy. Indeed, from Di = D(ui−1, ui, ui+1, ui+2)Di−1, we deduce detDi =
detDi−1 · ui

ui−3
and the assertion follows by taking determinants and using the induction

hypothesis. Let us now establish (4.1). To avoid confusion, let us agree to denote by a′, b′,
c′, d′ and prec′ the values of a, b, c, d and prec respectively at the beginning of the i-th
iteration of the loop. By induction hypothesis (or by initialization if i = 1), we have:

(a′, b′, c′, d′) ≡ (ui−1, ui, ui+1, ui+2) (mod pNϕi−1(Z4
p)). (4.2)

Moreover, we know that the determinant of ϕi−1 has valuation prec′. Hence (4.2) remains true
if a′, b′, c′ and d′ are replaced by other values which are congruent to them modulo pprec′ . In
particular it holds if a′, b′, c′ and d′ denotes the values of a, b, c and d after the execution of
line 4. Applying Lemma 3.4 and Proposition 3.12 to ϕi−1 and ϕi (at the point (u0, u1, u2, u3)),
we get:

f
(
(ui−1, ui, ui+1, ui+2) + pNϕi−1(Z4

p)
)

= (ui, ui+1, ui+2, ui+3) + pNϕi(Z4
p).

By the discussion above, this equation implies in particular that f(a′, b′, c′, d′) belongs to
(ui, ui+1, ui+2, ui+3) + pNϕi(Z4

p). We conclude by remarking that (a, b, c, d) ≡ f(a′, b′, c′, d′)
(mod pprecZ4

p) by construction and that pprecZ4
p ⊂ pNϕi(Z4

p).
Finally (4.1) applied with i = n− 3 together with the fact that ϕi stabilizes Z4

p imply that,
when we exit the loop, the value of d is congruent to un modulo pN . Hence, our algorithm
returns the correct value.

We conclude this section by remarking that Algorithm 1 performs computations at precision
at most O(pN+v) where v is the maximum of the sum of the valuations of five consecutive
terms among the first n terms of the SOMOS sequence we are considering. Experiments show
that the value of v varies like c · log n where c is some constant. Assuming that we are using
a FFT-like algorithm to compute products of integers, the complexity of Algorithm 1 is then
expected to be Õ(Nn) where the notation Õ means that we hide logarithmic factors.

We can compare this with the complexity of the more naive algorithm consisting of lifting the
initial terms u0, u1, u2, u3 to enough precision and then doing the computation using a naive
step-by-step tracking of precision. In this setting, the required original precision is O(pN+v′)
where v′ is the sum of the valuation of the ui’s for i varying between 0 and n. Experiments show
that v′ is about c′ · n log n (where c′ is a constant), which leads to a complexity in Õ(Nn+ n2).
Our approach is then interesting when n is large compared to N : under this hypothesis, it saves
roughly a factor n.

Appendix A. Generalization to manifolds

Many natural p-adic objects do not lie in vector spaces: points in projective spaces or elliptic
curves, subspaces of a fixed vector space (which lie in Grassmannians), classes of isomorphism
of certain curves (which lie in various moduli spaces), etc. In this appendix we extend the
formalism developed in Section 3 to a more general setting: we consider the quite general case
of differentiable manifolds locally modeled on ultrametric Banach spaces. This covers all the
aforementioned examples.

A.1. Differentiable K-manifolds

The theory of finite dimensional K-manifolds is presented for example in [16, Ch. 8-9]. In this
section, we shall work with a slightly different notion of manifolds which allows also Banach
vector spaces of infinite dimension. More precisely, for us, a differentiable K-manifold (or just
K-manifold for short) is the data of a topological space V together with an open covering
V =

⋃
i∈I Vi (where I is some set) and, for all i ∈ I, an homeomorphism ϕi : Vi → Ui where
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Ui is an open subset of a K-Banach space Ei such that for all i, j ∈ I for which Vi ∩ Vj is
nonempty, the composite map

ψij : ϕi(Vij)
ϕ−1

i−→ Vij
ϕj−→ ϕj(Vij) (with Vij = Vi ∩ Vj) (A.1)

is differentiable. We recall that the mappings ϕi above are the so-called charts. The ψij ’s are
the transition maps. The collection of ϕi’s and ψij ’s is called an atlas of V . In the sequel, we
shall assume further that the open covering V =

⋃
i∈I Vi is locally finite, which means that

every point x ∈ V lies only in a finite number of Vi’s. Trivial examples of K-manifolds are
K-Banach spaces themselves.

If V is a K-manifold and x is a point of V , we define the tangent space TxV of V at x as
the space Ei for some i such that x ∈ Vi. We note that if x belongs to Vi and Vj , the linear
map ψ′ij(ϕi(x)) defines an isomorphism between Ei and Ej . Furthermore these isomorphisms
are compatible in an obvious way. This implies that the definition of TxV given above does not
depend (up to some canonical isomorphism) on the index i such that x ∈ Vi and then makes
sense.

As usual, we can define the notion of differentiability (at some point) for a continuous
mapping between two K-manifolds by viewing it through the charts. A differentiable map
f : V → V ′ induces a linear map on tangent spaces f ′(x) : TxV → Tf(x)V

′ for all x in the
domain V . It is called the differential of f at x.

A.2. Precision data

Returning to our problem of precision, given V a K-manifold as above, we would like to be
able to deal with “approximations up to some precision” of elements in V , i.e. expressions of
the form x+O(H) where x belongs to a dense computable subset of V and H is a “precision
datum”. For now, we fix a K-manifold V and we use freely the notations I, Vi, ϕi, etc.
introduced in §A.1.

Definition A.1. Let x ∈ V . A precision datum at x is a lattice in the tangent space TxV
such that for all indices i and j with x ∈ Ui ∩ Uj , the image of TxV in Ei is a first order lattice
for ψij at ϕi(x) (cf Definition 3.3).

Remark A.2. The definition of a precision datum at x depends not only on x and the
manifold V where it lies but also on the chosen atlas that defines V .

Lemma A.3. Let x ∈ V and H be a precision datum at x. The subset

ϕ−1
i

(
ϕi(x) + ϕ′i(x)(H)

)
⊂ V

does not depend on the index i such that x ∈ Vi.

Proof. Let i and j be two indices such that x belongs to Vi and Vj . Set xi = ϕi(x) ∈ Ei
and Hi = ϕ′i(x)(H). The equality

ϕ−1
i

(
ϕi(x) + ϕ′i(x)(H)

)
= ϕ−1

j

(
ϕj(x) + ϕ′j(x)(H)

)
is clearly equivalent to ψij(xi +Hi) = ψij(xi) + ψ′ij(xi)(Hi) and the latter holds because Hi is
a first order lattice for ψij at xi.

We are now in position to define x+O(H).
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Definition A.4. Let x ∈ V and H be a precision datum at x. We set

x+O(H) = ϕ−1
i

(
ϕi(x) + ϕ′i(x)(H)

)
⊂ V

for some (equivalenty, all) i such that x ∈ Vi.

Change of base point. In order to restrict ourselves to elements x lying in a dense
computable subset, we need to compare x0 +O(H0) with varying x+O(H) when x and
x0 are close enough. Let us first examine the situation in a fixed given chart: we fix some
index i ∈ I and pick two elements x0 and x in Vi. We consider in addition a lattice H̃0 in Ei
— which should be think as ϕ′i(x0)(H0) — and we want to produce a lattice H̃ such that
ϕi(x0) + H̃0 = ϕi(x) + H̃. Of course H̃ = H̃0 does the job as soon as ϕi(x)− ϕi(x0) ∈ H̃0.
Now, we remark that the tangent spaces Tx0

V and TxV are both isomorphic to Ei via the
maps ϕ′i(x0) and ϕ′i(x) respectively. A natural candidate for H is then:

H =
(
ϕ′i(x)−1 ◦ ϕ′i(x0)

)
(H0). (A.2)

With this choice, x+O(H) = x0 +O(H0) provided that x and x0 are close enough in the
following sense: the difference ϕi(x)− ϕi(x0) lies in the lattice ϕ′i(x0)(H0). We furthermore
have a property of independence on i.

Proposition A.5. Let x0 ∈ V and H0 be a precision datum at x0. Then, for all x
sufficiently close to x0,
(i) the lattice H defined by (A.2) does not depend on i and is a precision datum at x, and
(ii) we have x+O(H) = x0 +O(H0).

Proof. We first prove (i). For an index i such that x, x0 ∈ Vi, let us denote by fi : Tx0
V →

TxV the composite ϕ′i(x)−1 ◦ ϕ′i(x0). Given an extra index j satisfying the same assumption, the
difference fi − fj goes to 0 when x converges to x0 (see Remark 3.2). Since H0 is open in Tx0

V ,
this implies that (fj − fi)(H0) contains fi(H0) and fj(H0) if x and x0 are close enough. Now,
pick w ∈ fj(H0) and write it w = fj(v) with v ∈ H0. Then w is equal to fi(v) + (fj − fi)(v) and
thus belongs to fi(H0) because each summand does. Therefore fj(H0) ⊂ fi(H0). The inverse
inclusion is proved in the same way. The fact that H is a precision datum at x is easy and left
to the reader. Finally, if x is close enough to x0, it is enough to check (ii) in the charts but this
was already done.

A.3. Generalization of the main Lemma

With above definitions, Lemma 3.4 extends to manifolds. To do so, we first need to define a
norm on the tangent space TxV (where V is some K-variety and x is a point in V ). There is
actually in general no canonical choice for this. Indeed, let us consider a K-manifold V covered
by charts Ui’s (i ∈ I) which are open subset of K-Banach spaces Ei’s. If x is a point in V ,
the tangent space TxV is by definition isomorphic to Ei for each index i such that x ∈ Vi. A
natural norm on TxV is then the one obtained by pulling back the norm on Ei. However, since
the transition maps are not required to be isometries, this norm depends on the choice of i.
They are nevertheless all equivalent because the transition maps are required to be continuous.

In the next lemma, we choose any of the above norms for TxV .

Lemma A.6. Let V and W be two K-manifolds. Suppose that we are given a differentiable
function f : V →W , together with a point x ∈ V such that f ′(x) : TxV → Tf(x)W is surjective.



Page 18 of 21 XAVIER CARUSO, DAVID ROE AND TRISTAN VACCON

Then, for all ρ ∈ (0, 1], there exists a positive real number δ such that, for all r ∈ (0, δ), any
lattice H in TxV such that B−TxV

(ρr) ⊂ H ⊂ BTxV
(r) is a first order lattice for f at x.

Proof. Apply Lemma 3.4 in charts.

Remark A.7. The constant δ that appears in the lemma depends (up to some multiplica-
tive constant) on the norm that we have chosen on TxV . However, once this norm is fixed, and
assuming further that V and W are locally analytic K-manifolds and the mapping f is locally
analytic as well, the constant δ can be made explicit using the method of Section 3.2.

A.4. Examples

We illustrate the theory developped above by some classical examples, namely elliptic curves
and grassmannians.

Elliptic curves. In this example, we assume for simplicity that K does not have characteris-
tic 2. Let a and b be two elements of K such that 4a3 + 27b2 6= 0 and let E be the subset of K2

consisting of the pairs (x, y) satisfying the usual equation y2 = x3 + ax+ b. Let prx : E → K
(resp. pry : E → K) denote the map that takes a pair (x, y) to x (resp. to y).

We first assume that a and b lie in the subring R of exact elements. For each point P0 =
(x0, y0) on E except possibly a finite number of them, the map prx define a diffeomorphism
from an open subset containing P0 to an open subset of K; the same is true for pry. Moreover,
around each P0 ∈ E, at least one of these projections satisfies the above condition. Hence the
maps prx and pry define together an atlas of E, giving E the structure of a K-manifold.

Let P0 be a point in E around which prx and pry both define charts. Lemma A.3 then tells
us that a precision datum on x determines a precision datum on y and vice versa. Indeed, in
a neighborhood of P0 we can write y =

√
x3 + ax+ b (for some choice of square root) and find

the precision on y from the precision on x using Lemma 3.4. We can go in the other direction
as well by writing x locally as a function of y. A precision datum at P0 is then nothing but
a precision datum on the coordinate x or on the coordinate y, keeping in mind that each of
them determines the other. Viewing a precision datum at P0 as a lattice in the tangent space
is a nice way to make it canonical but in practice we can just choose one coordinate and track
precision only on this coordinate.

We conclude this example by showing a simple method to transform a precision datum on
x to a precision datum on y and vice versa. Differentiating the equation of the elliptic curve,
we get:

2y · dy = (3x2 + a) · dx. (A.3)

In the above dx and dy should be thought as a little perturbation of x and y respectively.
Equation (A.3) then gives a linear relation between the precision on x (which is represented by
dx) and those on y (which is represented by dy). This relation turns out to correspond exactly
to the one which is given by Lemma 3.4.

Finally, consider the case where a and b are themselves given with finite precision and E
is not fully determined. So we cannot consider it as a K-manifold and the above discussion
does not apply readily. Nevertheless, we can always consider the submanifold of K4 consisting
of all tuples (a, b, x, y) satisfying y2 = x3 + ax+ b. The projections on the hyperplanes a = 0,
b = 0, x = 0 and y = 0 respectively define charts of this K-manifold. From this, we see that a
precision datum on a point of the “not well determined” elliptic curve E is a precision datum
on a tuple of three variables among a, b, x and y.
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Grassmannians. Let d and n be two nonnegative integers such that d ≤ n. The Grass-
mannian Grass(d, n) is the set of all sub-vector spaces of Kn of dimension d. It defines an
algebraic variety over K and hence a fortiori a K-manifold. Concretely, a vector space V ⊂ Kn

of dimension d is given by a rectangular matrix M ∈Md,n(K) whose rows form a basis of V
and two such matrices M and M ′ define the same vector space if there exists P ∈ GLd(K)
such that M = PM ′. Performing row echelon, we find that we can always choose the above
matrix M in the particular shape:

M =
(
Id N

)
· P (A.4)

where Id denotes the (d× d) identity matrix, N ∈Md,n−d(K) and P is a permutation matrix
of size n. Moreover two such expressions with the same P necessarily coincide. Hence each
permutation matrix P defines a chart UP ⊂ Grass(d, n) which is canonically diffeomorphic to
Md,n−d(K) ' Kd(n−d).

In other words, if V is a subspace of Kn of dimension d, we represent it as a matrix M of
the shape (A.4) (using row echelon) and a precision datum at V is nothing but a precision
datum on the matrix N . If we choose another permutation matrix to represent V , say P ′, we
end up with another matrix N ′; the matrices N and N ′ are then related by a simple relation.
Differentiating it, we find a formula for translating the precision datum expressed in the chart
UP to the same precision datum expressed in the chart UP ′ . Of course, in practice, when we
are doing computations on subspaces of Kn (like sum or intersection), we represent the spaces
in charts as above and perform all the calculations in these charts.

Appendix B. Example: Matrices

We saw in the core of the article that the differential of an operation encodes the intrinsic
loss/gain of precision when performing this operation. In this appendix we compute the
differential of various common operations on matrices. Surprisingly, we observe that all
differentials we will consider are rather easy to compute even if the underlying operation is
quite involved.

In what follows, we use freely the “method of physicists” to compute differentials: given a
function f differentiable at some point x, we consider a small perturbation dx of x and write
f(x+ dx) = y + dy by expanding LHS and neglecting terms of order 2. The differential of f
at x is then the linear mapping dx 7→ dy.

Determinants and characteristic polynomials. We first outline the standard computation
of the differential of the function det : Mn(K)→ K. Suppose that M ∈ GLn(K) and that
Com(M) = det(M)M−1. Then

det(M + dM) = det(M) · det(I +M−1 · dM)

= det(M) ·
(
1 + Tr(M−1 · dM)

)
= det(M) + Tr(Com(M) · dM).

The differential of det at M is then dM 7→ Tr(Com(M) · dM). It turns out that this formula
is still valid when M is not invertible. The same computation extends readily to characteristic
polynomials, since they are defined as determinants. More precisely, let us consider the function
χ : Mn(K)→ Kn[X] taking a matrix M to its monic characteristic polynomial det(X −M).
Then χ is differentiable at each point M ∈Mn(K) and its differential is given by dM 7→
Tr(Com(X−M) · dM).

LU factorization. Define the LU factorization of a square matrix M ∈Mn(K) as a
decomposition M = LU where L is lower triangular and unipotent and U is upper triangular.
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Such a decomposition exists and is unique provided that no principal minor of M vanishes.
We can then consider the mapping M 7→ (L,U) defined over the Zariski-open set of matrices
satisfying the above condition. In order to differentiate it, we differentiate the relation M = LU
and rewrite the result as

L−1dM U−1 = L−1 · dL+ dU · U−1.

We remark that in the right hand side of the above formula, the first summand is lower
triangular with zero diagonal whereas the second summand is upper triangular. Hence in order
to compute dL and dU , one can proceed as follows:

(1) compute the product dX = L−1dM U−1,
(2) separate the lower and upper part of dX obtaining L−1 · dL and dU · U−1

(3) recover dL and dU by multiplying the above matrices by L on the left and U on the
right respectively.

The above discussion extends almost verbatim to LUP factorization; the only difference is that
LUP factorizations are not unique but they are on a small neighborhood of M if we fix the
matrix P .

QR factorization. A QR factorization of a square matrix M ∈Mn(K) will be a decom-
position M = QR where R is unipotent upper triangular and Q is orthogonal in the sense
that tQ ·Q is diagonal. As before, such a decomposition exists and is unique on a Zariski-
open subset of Mn(K). The mapping f : M 7→ (Q,R) is then well defined on this subset. We
would like to emphasize at this point that the orthogonality condition defines a sub-manifold
of Mn(K) which is not a vector space: it is defined by equations of degree 2. The codomain
of f is then also a manifold; this example then fits into the setting of Appendix A but not to
those of Section 3. We can differentiate f by following the method used for LU factorization.
Differentiating the relation M = QR, we obtain

tQ · dM ·R−1 = tQ · dQ+ ∆ · dR ·R−1 (B.1)

where ∆ = tQ ·Q is a diagonal matrix by definition. Moreover by differentiating tQ ·Q = ∆,
we find that tQ · dQ can be written as the sum of an antisymmetric matrix and a diagonal one.
Since moreover dR ·R−1 is upper triangular with all diagonal entries equal to 0, we see that
(B.1) is enough to compute dQ and dR from Q, R and dM .
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