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Abstract. We improve the database of p-adic fields in the LMFDB by sys-

tematically using Krasner-Monge polynomials and working relatively as well

as absolutely. These improvements organize p-adic fields into families. They
thereby make long lists of fields more manageable and various theoretical struc-

tures more evident. In particular, the database now includes all degree 16
extensions of Q2.

Contents

1. Introduction 1
2. Herbrand invariants 5
3. Eisenstein polynomials 10
4. Sample families 15
5. Theoretical connections 18
Acknowledgements 25
References 25

1. Introduction

In arithmetic parts of mathematics, it is often useful to work one prime at a
time. When working at a single prime p, the field Qp of p-adic numbers commonly
plays a central role. Also important are finite-degree field extensions of Qp. The
number of isomorphism classes of such extensions of a given degree n is finite and
given by a formula due to Monge [Mon11, Thm 1]. Some cardinalities are given in
Table 1.1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
p = 2 1 7 2 59 2 47 2 1823 3 158 2 5493 2 590 4 890111
p = 3 1 3 10 5 2 75 2 8 795 6 2 785 2 6 1172 13
p = 5 1 3 2 7 26 7 2 11 3 258 2 17 2 6 1012 17
p = 2 1 3 2 10 2 8 2 49 3 10 2 43 2 12 4 389
p = 3 1 2 4 3 2 10 2 4 28 4 2 20 2 4 16 5
p = 5 1 2 2 3 6 4 2 4 3 16 2 6 2 4 20 5

Table 1.1. Top: The number of isomorphism classes of degree n
field extensions of Qp. Bottom: The number of degree n families
over Qp. Cases where all ramification is tame are in gray.

An online database giving defining polynomials and various invariants of p-adic
fields appeared in 2006, in connection with the paper [JR06]. The original database
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quickly expanded via various works [JR04, JR08, Awt12, ABM+15], to include
complete detailed tables for many (p, n), including all those listed on Table 1.1
except (2, 16). Another improvement was a migration in 2011 from an ad hoc
platform to the LMFDB [LMFDB], so that the data can be more easily inspected
from a wider variety of perspectives.

The purpose of this paper is to describe a substantial improvement we have
recently made to the database in the LMFDB. The starting point for the improve-
ment is the systematic use of certain Eisenstein polynomials. These polynomials
were introduced long ago by Krasner [Kra37] and their theory was brought into
modern form by Monge [Mon14]. In this approach, fields are naturally organized
into families. The number of families for small (p, n) is also given in Table 1.1.

The improved database is at

https://olive.lmfdb.xyz/padicField/

and has a page for each of the 19585 families with p < 200 and n ≤ 47. In this
range, there are about 115 billion fields. Pages for individual fields can be added
to the database according to future needs. At present, among the fields which have
pages are all the 890111 degree 16 extensions of Q2. Some supporting code for the
database is at https://github.com/roed314/padic_db.

The subsections of this introduction give a first idea of the previous structure of
the database and how the systematic introduction of families improves it. Sections 2
and 3 then present the theory necessary for the improvement, with some of the
more subtle details and various algorithmic issues deferred to the companion paper
[GRJK+]. Sections 4 and 5 encourage the reader to explore and appreciate the
database, first by focusing on sample families and then by focusing on connections
to various theorems in the Galois theory of p-adic fields.

1.1. The previous field-by-field approach. We begin by describing some as-
pects of the database as it stood before our recent improvements. Degree n fields
were presented as L = Qp[x]/f(x) with f(x) ∈ Z[x] a degree n polynomial obtained
from a search over possibilities. Detailed attention was not paid to the choice of
f(x). Rather the focus was on the most important invariants of L.

The extension L/Qp has a normal closure Lgal/Qp and hence a Galois group
Gal(Lgal/Qp). The general theory of p-adic fields gives a decreasing filtration of
this group by normal subgroups. The successive subquotients Qs each have a size
|Qs| and also an associated slope s. Here slopes of −1, 0, and positive rational
numbers correspond to no ramification, tame ramification, and wild ramification.

The database focused on the filtered group Gal(Lgal/Qp). Filtered groups are
somewhat unwieldy objects, so the database gave only associated numerical invari-
ants. To represent the group, it gave its standard label nTj in the list of conjugacy
classes of transitive subgroups of the symmetric group Sn [BM83, CHM98, Hul05].
To represent the filtration, it gave the Galois slope content Wu

t . Here u = |Q−1|,
t = |Q0|, and a wild subquotient Qs of size pρ contributes ρ copies of s to the
weakly increasing list W of wild slopes. So the word “content” is in the spirit of
“Jordan-Hölder content.”

As an example, one of the 795 nonic 3-adic fields L was represented by the
polynomial

(1.1) f(x) = 21 + 18x+ 18x2 + 21x3 + 9x4 + 18x5 + x9.

https://olive.lmfdb.xyz/padicField/
https://github.com/roed314/padic_db
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The Galois group has 324 = 2234 elements. On the standard list from 9T1 = C9 to
9T45 = S9, it is 9T24. The Galois slope content is [ 12 ,

1
2 ,

2
3 ,

3
2 ]

2
2. In general, Galois

groups were determined in the above-cited papers by computing and factoring many
resolvents over Qp. The Galois slope content was determined by studying the
ramification in the fields defined by these factors.

Previous to our current improvements, the database emphasized Artin slopes
ŝk = sk+1 rather than our current slopes sk, displaying e.g. [

3
2 ,

3
2 ,

5
3 ,

5
2 ]

2
2 in the above

example. Artin slopes ŝk are indeed often more convenient in global applications.
We are now emphasizing the smaller slopes sk, often called Swan slopes, because
they are more natural in detailed local analyses.

1.2. The new family approach. The Galois slope content of any finite exten-
sion L/Qp splits cleanly into the visible slope content [s1, . . . , sw]

f
ϵ , with associated

degree [L : Qp] = fϵpw, and the rest, called hidden slope content, with associated
degree [Lgal : L]. In example (1.1), the visible slope content is [12 ,

3
2 ]

1
1 and the

hidden slope content is [ 12 ,
2
3 ]

2
2. The visible slope content is enormously easier to

compute than the hidden slope content. As we will explain, no Galois-theoretic
concepts are needed.

We say that two extensions of Qp belong to the same absolute family if their visi-
ble slope contents are the same. The key idea underlying this paper is that one can
find defining polynomials for all the extensions in a family by suitably specializing
a single generic polynomial belonging to the family. These specializations are the
previously mentioned Krasner-Monge polynomials.

Continuing the example begun in (1.1), consider the family of 3-adic fields with
visible slope content [ 12 ,

3
2 ]

1
1. Following the general recipe we will present, the generic

polynomial is

(1.2) f(a3, a10, b11, b13, π, x) = π
(
1 + a10πx+ b11πx

2 + a3x
3 + b13πx

4
)
+ x9.

Specializing via π = 3, aσ ∈ {1, 2}, and bσ ∈ {0, 1, 2} gives thirty-six 3-Eisenstein
polynomials in Z[x]. They represent bijectively the thirty-six entries on the list
of 795 nonic 3-adic fields which have visible slope content [ 12 ,

3
2 ]

1
1. It couldn’t be

easier! Moreover, as an important bonus, the coordinates provided by generic
polynomials often give rise to clean descriptions of the hidden invariants. In the
case of (1.2) there are ten possibilities for the pair consisting of the Galois group
and the hidden slope content, one pair being the above (9T24, [ 12 ,

2
3 ]

2
2). Three fields

have this pair, namely the ones with (a3, a10, b11) = (1, 2, 2). The particular field
defined by (1.1) comes from b13 = 2. The other nine subsets likewise have very
elementary descriptions, as can be seen in Table 4.1.

Our sample visible slope content [ 12 ,
3
2 ]

1
1 has two simplifying features: its un-

ramified degree f is 1 and the other data in the visible slope content measuring
ramification is rigid, as we will explain in §2.3. We broadly describe the general
case in this paper, but defer a full treatment of the complications associated with
f > 1 and nonrigidity to [GRJK+].

Using symbols like [ 12 ,
3
2 ]

1
1 in a naming scheme for families would be unwieldy

as part of a URL. The database instead uses labels in the form p.f.e.cL, as in
3.1.9.18b for the example. Here c is the common discriminant-exponent of all
the fields in the family and the letter L resolves ambiguity. Similarly, the mathe-
matically ideal Eisenstein coefficients do not work well as labels identifying fields
within a family. The database instead appends a subfamily number ℓ followed by

https://olive.lmfdb.xyz/padicField/family/3.1.9.18b


4 J. GUARDIA, J.W. JONES, K. KEATING, S. PAULI, D.P. ROBERTS, AND D. ROE

a counter j, so that the example field (1.1) becomes 3.1.9.18b4.1. In (1.2), two
fields are in the same subfamily if they have the same (a3, a10). The general notion
of subfamily involves residual polynomials and is given in [GRJK+].

1.3. The new relative context. The paper [JR06] and the subsequent papers
extending the database were aggressively absolute: p-adic fields of degree N were
always given by a degree N polynomial with coefficients in Z. However it is often
better to build fields in towers and the theory of generic polynomials fits perfectly
into this paradigm. The theory of slopes generalizes to this relative context and
we say that two extensions L1/K and L2/K belong to the same family over K if
they have the same relative visible slope content I = [s1, . . . , sw]

f
ϵ . We denote this

family, viewed simply as a finite set of isomorphism classes of extensions, by I/K.
Henceforth, we call I a Herbrand invariant, because we have other ways of ex-

pressing the data in I that do not directly involve slopes, as we will be explaining
in the next section. In fact our viewpoint is that p-adic Herbrand invariants are
simple combinatorial objects that could be described independently of p-adic fields.
To get a family, one combines two objects of different nature, I and K, subject to
a numerical compatibility condition.

To continue the example begun in (1.1) yet further, take any finite extensionK of
Q3 as ground field, with residual cardinality denoted by q. Consider all extensions
L/K with Herbrand invariant I = [ 12 ,

3
2 ]

1
1. This family I/K is again bijectively

indexed by certain specializations of the exact same generic polynomial (1.2). The
difference is that π now is specialized to a uniformizer of K, rather than to the
uniformizer 3 of Q3, and the ai and bi to elements of K with distinct reductions
modulo π. Thus the real purpose of (1.2) is to get all relative extensions L/K
of type [ 12 ,

3
2 ]

1
1, for any fixed 3-adic base field K. Directly generalizing the case

K = Q3, this family has cardinality |I/K| = (q − 1)2q2.
While we work relatively throughout this paper, the improved database keeps

the original context of p-adic fields L as one of its two focal points. It has a basic
bipartite structure. On the one hand, each p-adic field L within range has, as before,
a homepage. On the other hand, each family I/K now also has a homepage. The
two homepages are linked if K can be realized as a subfield of L such that L is in
the family I/K.

In the case of the example family [ 12 ,
3
2 ]

1
1/Q3, each field L in it has exactly

one cubic subfield K ′ having discriminant-exponent 3. The cubic extension L/K ′

then appears in the relative family [ 72 ]
1
1/K

′. There are two possibilities for K ′,
namely 3.1.3.3a1.1 or 3.1.3.3a2.1, each of which occurs for half of the L. So
the fields in the absolute family [ 12 ,

3
2 ]

1
1/Q3 come half each from the relative fam-

ilies 3.1.3.3a1.1-1.3.9a and 3.1.3.3a2.1-1.3.9a. Here, the syntax for rela-
tive families is (base field)-f.e.c(tiebreaker). Two fields L in [ 12 ,

3
2 ]

1
1/Q3 also have

three more cubic subfields, now with discriminant-exponent 5. The index page
olive.lmfdb.xyz/padicField/families/?label absolute=3.1.9.18b gives an
overview of all possibilities.

1.4. Notation. We gather and comment on our most basic notations for the
reader’s convenience. As already indicated, a prime p is fixed, the symbol K is
reserved for a finite extension of the field Qp of p-adic numbers, and the symbol L
is reserved for a finite extension of K. We let O be the ring of integers of K, Π its

https://olive.lmfdb.xyz/padicField/3.1.9.18b4.1
https://olive.lmfdb.xyz/padicField/3.1.3.3a1.1
https://olive.lmfdb.xyz/padicField/3.1.3.3a2.1
https://olive.lmfdb.xyz/padicField/family/3.1.3.3a1.1-1.3.9a
https://olive.lmfdb.xyz/padicField/family/3.1.3.3a2.1-1.3.9a
https://olive.lmfdb.xyz/padicField/families/?label_absolute=3.1.9.18b
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maximal ideal, κ = O/Π its residue field, and q = |κ| its residual cardinality. We
usually view K as fixed and L as varying.

Many fields and numbers are associated to a given L/K. The most basic come
from its standard tower

(1.3) K
f

⊆ Lur

ϵ
⊆ L0

pw

⊆ L.

Here Lur is the maximal unramified subextension and L0 is the maximal tamely
ramified subextension. The superscripts indicate relative degrees so that the entire
degree n = [L : K] comes with a canonical factorization, fϵpw.

The most familiar quantity capturing ramification in L/K is the discriminant
disc(L/K) = Πc. We are emphasizing the importance of the discriminant-exponent
c in our LMFDB labeling scheme. But for deeper analysis we prefer to switch to
the mean m via the transformation equation

(1.4) c = f(e− 1 + em).

So in the continuing nonic 3-adic example, the focus on c = 18 is shifted onto
m = 10/9.

Most of our attention is focused on a discrete invariant W measuring the wild
ramification present in the extension L/Lur. One way to describeW is by the vector
[s1, . . . , sw] already emphasized. Two similar ways are given in (2.4) and (2.5)
and relations are summarized either by (2.6) and (2.7) or, in a different manner,
by (3.6) and (3.7). The invariant W is the wild part of the Herbrand invariant
I = Inv(L/K) = W f

ϵ .
The set of all extensions L/K sharing a given I is denoted I/K. We think of

I as a discrete invariant of L/K. In contrast, we view the invariants necessary to
distinguish fields inside of I/K as continuous. They have their own complicated
notation, introduced in Section 3.

All the notation for L/K has its analog for K/Qp, starting with Qp ⊆ Kur ⊆
K0 ⊆ K. If we were to name everything, we would have to take care to avoid
notation clashes. Fortunately, our considerations here make very little use of the
internal structure ofK, as we are focused mainly on extensions ofK. The invariants
of K which enter our considerations most often are its absolute ramification index
eK = [K : Kur] = ordΠ(p) and the above-mentioned residual cardinality q = |κ|.

In Sections 2 and 3 we work completely constructively, making no mention of any
algebraic closure of Qp. In Sections 4 and 5 the attention shifts to Galois theory.

There we fix an algebraic closure Qp of Qp and view the ground field K as in Qp.

Given an abstract extension L/K of degree n, we let Lgal be the compositum of the
images of the n different K-linear embeddings of L into Qp. So the Galois group

Gal(Lgal/K) is a quotient of Gal(Qp/K).

1.5. The Laurent series case. There is an extremely parallel case where one
replaces the absolute ground field Qp by the field Fp((t)) of Laurent series over Fp.
The direct connections between these two cases is of great current interest [Sch14,
§2]. As the database contains only extensions of Qp, we will limit our discussion of
the Laurent series case to occasional brief remarks that clarify the p-adic case.

2. Herbrand invariants

Herbrand invariants are fundamental to this paper because they index families.
This section explains what they are and how to work with them explicitly.
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2.1. An elementary approach emphasizing canonical subfields. Serre’s
standard text [Ser79, IV] associates a Herbrand function ϕ : R≥0 → R≥0 to any
Galois extension L/K of p-adic fields. The construction involves filtering Gal(L/K)
by a descending family of subgroups indexed in two ways, by lower and upper num-
bering. Remark 1 of [Ser79, IV.3] extends the definition of ϕ to general extensions
L/K by reduction to the Galois case. Details of this reduction were first explained
in print by Deligne in a six-page appendix to [Del84].

It is less widely known that the Herbrand function of a general extension L/K
can be understood without any reference to group theory whatsoever. In this
subsection, we use the method of slope polygons to get relevant numerical quantities.
We are following [JR06, §3.4], except that the Artin slopes there are translated to
Swan slopes here. Figure 2.1 starts our second continuing example, based on

(2.1) f(x) = 1 + 6x4 + x8.

This particular polynomial is chosen because it defines a Galois extension over both
Q and Q2, with Galois group D4. The reader can then follow along, using number
field software to confirm our statements, e.g. Pari’s nfsubfields to get subfields
and smalldiscf to get their discriminants and ultimately their means via (1.4).
The fact that this example is Galois is irrelevant for the method we are describing.

Consider towers L/L′/Lun/K. For each, one has the degree e′ = [L′ : Lun], the
mean m′ of L′/Lun, and thus a point (e′, e′m′) in a Cartesian plane. The slope
polygon S is the lower boundary of the convex hull of all such points. Over each
interval [ϵpk−1, ϵpk] the polygon S is just a segment with some slope sk. The symbol
[s1, . . . , sw]

f
ϵ is then the visible slope content emphasized in the introduction.

1 2 4 8

1

5

15

1

2

2.5

Figure 2.1. The slope polygon S associated to the octic ex-
tension L/Q2 defined by (2.1). The slopes [1, 2, 2.5] and means
⟨ 12 ,

5
4 ,

15
8 ⟩ = ⟨0.5, 1.25, 1.875⟩ are indicated.

Define h to be the function on [1, e] having graph S. For k = 1, . . . , w, define

mk = h(ϵpk)
ϵpk . Clearly, the data ⟨m1, . . . ,mw⟩fϵ contains the exact same information

as [s1, . . . , sw]
f
ϵ . If the point Pk = (ϵpk, ϵpkmk) is a turning point or the right

endpoint of S then we say that the index k is final. Then Pk comes from exactly
one tower L/Lk/Lun/K. The standard chain (1.3) can be extended to a more
refined chain from K to L = Lw by including all the other canonical subfields Lk.
Note that for a final index k, the extension Lk/Lun has mean mk. For a non-final
index k, there may or may not be a tower mapping to Pk. In the example, the
indices k = 1, 2, and 3 are all final.
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2.2. Four perspectives on Herbrand invariants. The slopes sk just introduced
are usually called breaks in the upper numbering. There is similarly a dual polygon
called the ramification polygon in which certain elementary quantities rk appear
along with the means mk again. These rams rk coincide with the breaks in the lower
numbering. We will emphasize our elementary and non-Galois-theoretical viewpoint
by using these two terms systematically, and not making further reference to breaks
or numbering. Even when we bring back Galois groups in the last two sections, we
will use the briefer terminology of slopes.

We write the Herbrand invariant of a p-adic extension L/K in four ways, the
first classical but the others advantageous in various situations:

Inv(L/K) = (ϕ, f) (ϕ is the Herbrand function)(2.2)

= [s1, . . . , sw]
f
ϵ (the sk are the slopes)(2.3)

= ⟨m1, . . . ,mw⟩fϵ (the mk are the means)(2.4)

= (r1, . . . , rw)
f
ϵ (the rk are the rams).(2.5)

As a matter of notation, the subscript ϵ and superscript f are allowed to be omit-
ted when they are 1. Our key reference [Mon14] had different aims that did not
require emphasis on Herbrand invariants. However it makes essential use of all the
quantities sk, mk and rk.

1 3 5
r

1

2

2.5

0.5

1.875

1.25

s

s=ϕ(r)

Figure 2.2. The Herbrand function ϕ for the octic extension
L/Q2 defined by (2.1). It takes the rams (r1, r2, r3) = (1, 3, 5)
of this extension to its slopes [s1, s2, s3] = [1, 2, 2.5]. The means
⟨0.5, 1.25, 1.875⟩ are obtained by the indicated extensions of seg-
ments.

As a convention, we put s0 = m0 = t0 = 0. Then (2.3)-(2.5) are related via

sk =
pmk −mk−1

p− 1
, mk =

k∑
j=1

p− 1

pk+1−j
sj ,(2.6)

rk = ϵpk
mk −mk−1

p− 1
, mk =

k∑
j=1

p− 1

ϵpj
rj .(2.7)

Formulas (2.6) reflect the perspective of slope polygons: each slope sk is a certain
rise-over-run and each mean mk is a weighted average of slopes, with the formal
slope s0 = 0 having coefficient 1/pw, so that the coefficients sum to one. Formulas
(2.7) reflect the dual perspective of ramification polygons. Direct transformation
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formulas between slopes and rams are a little more complicated, and one can just
compose two transformations with means in the middle.

Figure 2.2 uses our octic 2-adic continuing example to illustrate how the classical
version (2.2) is related to the more numerical versions (2.3)-(2.5). In general, the
graph of ϕ starts at (r0, s0) = (0, 0) and goes linearly to the (rk, sk) in order,
with an actual step being taken only if k is a final index, as otherwise we have
(ak, bk) = (ak+1, bk+1). It ends with a ray emanating from (rw, sw). If k is 0 or
a final index then the slope of the segment leaving (rk, sk) is 1/(ϵpk). With this
strong condition on slopes of the Herbrand segments, just ϕ determines all the sk,
mk, and tk.

2.3. Automorphisms, mass, and rigidity. An automorphism in Aut(L/K) nec-
essarily stabilizes all of the canonical subextensions of L/K. Because of this fact,
the Herbrand invariant I alone constrains the size of Aut(L/K). A key input is
that if k is a final index, with the ram rk having been repeated ρ times, then the
inertia group associated to Lk/Lk−ρ has the form Cρ

p ⋊ Cd, where d is the denom-
inator of the ram rk. The action is such that the step can only have nontrivial
automorphisms if d = 1, i.e. if rk is integral.

Define the ambiguity number of a p-adic Herbrand invariant (r1, . . . , rw)
f
ϵ to

be Amb(I) = fϵpi, where i is the number of integral rams (see §3.5 for further
discussion of related notions). Then an extension L/K in any I/K has |Aut(L/K)|
dividing Amb(I). The mass of L/K is by definition 1/|Aut(L/K)| and L/K is
called rigid if its mass is 1. We say that I is rigid if Amb(I) = 1. So all extensions
L/K in a family I/K with a rigid I are rigid.

2.4. Classification of Herbrand invariants. To classify all Herbrand invariants
and say which actually occur over a given ground field K, it is best to use rams as
was done in different language in [PS17, Prop 3.10]. First consider totally wildly
ramified extensions L/K of degree pρ having just a single ram r repeated ρ times.
The possibilities for r depend only on the absolute ramification index eK of the
ground field K.

Define first R∞
ρ to be the set of positive rational numbers with denominator

dividing pρ− 1 and numerator not dividing p. Then R∞
ρ is the correct collection of

r in the parallel case of Laurent series ground fields Fq((t)). For the characteristic
zero fields K on which this paper is focused, the set of possibilities ReK

ρ contains
all the elements of R∞

ρ which are less than peK/(p − 1). These elements exhaust
ReK

ρ except that ReK
1 also contains peK/(p − 1). We call this last ram arithmetic

and all the smaller rams geometric.
Now consider all extensions L/K with canonical factorization fϵpw. The Her-

brand invariants that can arise are (r1, . . . , rw)
f
ϵ where the rk are weakly increasing

and each in their allowed set, from the above considerations. For example, to get

all strictly increasing sequences, each rk is chosen from ReKϵpk−1

1 . This description
lets one produce any entry on the lower half of Table 1.1. If p is relatively prime to
n, then the wild considerations are all vacuous and the possible Herbrand invariants

are simply ( )
n/ϵ
ϵ as ϵ runs over divisors of n.

Figure 2.3 illustrates the case of Herbrand invariants (r1, r2) over 2- and 3-adic
fields, with an eye towards giving a visual understanding of the general case. Rather
than represent a Herbrand invariant I by a point at (r1, r2), we represent I by an
integer. This integer is the mass of the family I/K, where K is any ground field
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1
2

2
4

8
8

2

4

8

8

16
16 32

16

32
64

1
2

2

2
4

4
8

1 2 3 4
r1

1

2

3

4

5

6

7

8

r2

2 2
6 2

6 6
6 6

4

12
12

36

36

12
12

36
36

54 54

18
18

54
54
81

1
r1

1

2

3

4

r2

Figure 2.3. Herbrand invariants (r1, r2) with rj ≤ epj/(p − 1).
Left: (p, e) = (2, 2). Right, (p, e) = (3, 1).

compatible with I and having residue field of size p, as explained around (3.5).
Families for which both rams are geometric are presented in blue, and families
which have an arithmetic ram are presented in bold red. Making an independent
distinction, rigid families are indicated by a smaller font.

One should imagine each of these pictures extended to the entire first quadrant
of the (r1, r2) plane, so that for each positive integer j there is a bold red hook
Hj of entries with upper right corner at (jp/(p − 1), jp2/(p − 1)). The Herbrand
invariants compatible with a given p-adic field K are exactly the arithmetic ones
on HeK and the geometric ones under HeK .

As a numerical example, consider the total number of families over Qp with
degree p2. There is just one family with ramification index e = 1, the unramified

family ( )p
2

. There are p families with e = p, the geometric families (1)p, (2)p, . . . ,
(p− 1)p and the arithmetic family (p)p. Guided by Figure 2.3, one can check that

there are p3 − p2

2 + p
2 families with e = p2. For p = 2 and 3 respectively, the total

counts are 1 + 2 + 7 = 10 and 1 + 3 + 24 = 28, with 7 and 24 being the numbers
of families on or under H1 on Figure 2.3 and 10 and 28 appearing as entries in the
lower half of Table 1.1.

To see the seven and twenty-four families p.1.p2.C listed as an indexing table, one
can search for absolute families with residual characteristic p, residual field degree
f = 1, and ramification degree e = p2. To see a sixteen-line table corresponding to
the eK = 2 case of the left side of Figure 2.3, one can search analogously for relative
families. One needs to input an appropriate ground field by its label, say K = Q2(i)
by 2.1.2.2a1.1, as well as f = 1 and e = 4 again. The three tables produced in
this paragraph contain summary information, such as the masses appearing in
Figure 2.3.

2.5. Explicit composition via sorting. Let L/K/Q/Qp be a tower with

Inv(K/Q) = (t1, . . . , tw′)f
′

ϵ′ and Inv(L/K) = (tw′+1, . . . , tw′+w′′)f
′′

ϵ′′ .(2.8)

A great virtue of the traditional functional presentation of Herbrand invariants is
that one has the simple formula ϕL/Q(r) = ϕK/Q(ϕL/K(r)). Here we translate this
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formula into the more explicit language of rams, so as to be able to go directly from
(2.8) to Inv(L/Q) = (r1, . . . , rw)

f
ϵ

Of course, f = f ′f ′′, ϵ = ϵ′ϵ′′, and w = w′ + w′′. To do the nontrivial part, we
first define Tk = ϵ′′tk and formally write

(2.9) Inv(L/Q) = (T1, . . . , Tw′′ , tw′′+1, . . . , tw)
f
ϵ .

Then we change the entries of the w-vector by iterating the following replacement
in any order. Whenever there are two adjacent entries (a, b) with a > b, replace
them with (b, b+p(a− b)). When the w-vector becomes weakly increasing, it is the
desired ram vector (r1, . . . , rw).

The database uses this procedure to pass from the Herbrand invariant of a general
relative extension L/K to the Herbrand invariant of the corresponding absolute
extension L/Qp. If K is a canonical subfield of L, both steps of the process are
trivial and, very simply, rk = tk for all k.

To see the duality between rams and slopes, one can consider a modification of
this process. Step 1 yielding (2.9) is exactly the same. In the modified Step 2,
one iteratively replaces adjacent increasing (a, b) by (b, b − (b − a)/p) until the w-
vector becomes weakly decreasing. As a new final Step 3, one reverses the w-vector
obtained to make it weakly increasing. The kth entry of this final vector is ϵsk,
where sk is the kth slope of the extension L/Q.

3. Eisenstein polynomials

This section pictorially describes a well-behaved finite set Eis(L/K) of Eisenstein
polynomials defining any given totally ramified extension L/K. Thus f = 1 for the
entirety of this section.

3.1. Set-up. Let Eisen(e/K) be the space of Eisenstein polynomials of degree e
over K. We write an element of Eisen(e/K) as

(3.1) f(x) = F0 + F1x+ · · ·+ Fe−1x
e−1 + xe.

So the Fi run over the maximal ideal Π of the ring of integers O of K, except that
F0 is not in Π2. One has decompositions into finitely many parts,

Eisen(e/K) = ⊔IEisen(I/K), Eisen(I/K) = ⊔LEisen(L/K).(3.2)

On the left, I runs over totally ramified degree e Herbrand invariants that are
compatible with K. On the right, L runs over isomorphism classes of extensions of
K which have Herbrand invariant I.

To present things as concretely as possible, we choose a generator π of Π. We
choose also a set of representatives κ̃ containing 0 and 1 for the q-element residue
field κ. Rather than work with the Fi, we will work with π-adic expansions, writing
each Fi as π

∑∞
j=0 fi,jπ

j , with fi,j ∈ κ̃. If K is unramified over Qp we always take
the uniformizer π to just be p. A theoretically natural choice would be to take the
nonzero elements of κ̃ to be the (q − 1)st roots of unity in K. However, we make
the computationally more convenient choice of κ̃ = {0, . . . , q − 1} when q is prime.

It will also be convenient to use single-indexing simultaneously with double-
indexing, with σ and (i, j) determining each other via σ = je + i, j = ⌊σ/e⌋, and
i ∈ {0, . . . , e− 1}. With this convention, (3.1) is written

(3.3) F (x) = π

( ∞∑
σ=0

fσπ
jxi

)
+ xe.
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The last term xe will not be mentioned much in our narrative because it does not
contain an unspecified coefficient.

A problem with the right part of (3.2) is that the sets involved are infinite. We
will be replacing these sets by finite nonempty sets Eis(I/K) = ⊔LEis(L/K). In
the case when I is rigid, each of the Eis(L/K) contains just one polynomial.

3.2. Eisenstein diagrams. Fix a totally ramified Herbrand invariant I =
[s1, . . . , sw]ϵ. To explicitly describe the sets Eis(I/K) for all compatible K at once,
we consider the Eisenstein diagram of I in the vertical strip R with horizontal co-
ordinate i ∈ [0, e) and vertical coordinate s ∈ [0,∞). As indicated by the name,
this diagram depends on I only, not on K. Always we draw only [0, e)× [0, sw] as
there is no useful information associated to the rest of the strip.

Figures 3.1 and 3.2 each show the Eisenstein diagram for a family discussed
previously, as described in their captions. Most of our discussion of Eisenstein
diagrams is supported by one or both of these figures. We will give links to the
database for illustrations of other phenomena.

A spiral with points representing terms. We think of the rectangle R as a cut and
unrolled cylinder, with each horizontal line segment of constant level s coming from
a circle. We draw the spiral that starts at (0, 0) and goes up with slope 1/e. This
spiral wraps every time it meets the right edge of R. The part of the spiral that
goes from (0, j) to (e, j + 1) is called the jth ramp.

We place conditions on the term πfσπ
jxi by referring to the unique point Pσ on

ramp j with horizontal coordinate i. Equivalently Pσ is the unique point on the
spiral with s = σ/e. Thus P0 = (0, 0) is the starting point of the spiral, and as one
goes up one encounters the points P1, . . . , P⌊esw⌋ in order.

Figure 3.1. The Eisenstein diagram of the introductory nonic
3-adic Herbrand invariant with means ⟨ 13 ,

10
9 ⟩, slopes [ 12 ,

3
2 ], rams

( 12 ,
7
2 ), and generic polynomial (1.2). Various general facts are

relatively easy to see here because the two bands do not overlap.

Bands. For k = 1, . . . , w, the band Bk is defined to be the set of points in R
satisfying mk ≤ s < sk. As k increases, the mk strictly increase and so the bottom
edges of bands go up. However the sk only weakly increase. So the top edges of
the bands Bk for k in a segment of common sk agree, even as the widths of these
bands successively decrease by a factor of p, as in 2.1.16.30a, the sample family

https://olive.lmfdb.xyz/padicField/family/2.1.16.30a
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summarized in Table 4.3. It will also be convenient to let B0 denote the bottom
edge of the rectangle, i.e. the points with s = 0.

We shade bands by gray and indicate overlaps by darkening the gray. We color
bottom edges of bands green and the bounding top edges black. In the rare cases
where an upper edge agrees with a lower edge we dash this boundary using black
and green, as in 2.1.16.79a, the family highlighted in §5.5. These conventions
assist in visually identifying the bands, even when they overlap.

Index and types of points. We say that the index of an integer i ∈ [0, e) is k =
w − ordp(gcd(i, p

w)) ∈ {0, 1, . . . , w}. We partition the points Pσ into five types,
using colors and shapes to distinguish the types.

The point P0 = (0, 0) plays a special role. We call it the D-point and we mark it
by an olive pentagon. A D-point is critical and drawn solid if ϵ > 1. Otherwise it is
negligible and drawn hollow. Here, like with the red diamonds below, the solidness
indicates complications in the process of choosing unique distinguished polynomials
for fields L/K in the family I/K.

For σ > 0, we use the band Bk to classify the points Pσ of index k as follows.

• Z-points are points beneath Bk. Their associated color is clear, meaning
we don’t draw them.

• A-points are the unique points Pσ which are at the bottom edge of geometric
bands Bk for which k is final in its segment, meaning that either k = w or
sk+1 > sk. We draw them as solid green squares.

• B-points are points in their governing band Bk which are not A-points.
They are represented by solid blue disks.

• C-points are points above their governing band. They are represented by
red diamonds. A C-point is critical and drawn solid if it is on the top border
of any band. Otherwise it is negligible and drawn hollow.

The infinite set Eisen(I/K) now has the following explicit description. It is the
subset of Eisen(e/K) where fσ = 0 for Z-points and fσ ̸= 0 for A-points. The
key finite set Eis(I/K) is the subset of Eisen(I/K) where f0 = 1 if the D-point
is negligible and fσ = 0 for negligible C-points. The fact that Eis(I/K) still
represents all extensions in I/K is not at all obvious. The proof of a considerably
stronger statement is by Monge’s reduction algorithm [Mon14, §2]. Basic aspects
of this theory will be described in §3.5 below, and the full theory is described in a
computational context in [GRJK+].

3.3. Generic polynomials and numerics. The generic polynomial for a given
Herbrand invariant has the form

(
π
∑

σ fσπ
jxi
)
+xe. Here σ runs over all nonneg-

ative integers for which Pσ is drawn, but not negligible. To make structure more
evident, we replace fσ by dσ, aσ, bσ, or cσ according to whether Pσ is a D-point,
A-point, B-point, or C-point. So when these coefficients run independently over κ̃,
except for the inequalities d0, aσ ̸= 0, one gets the set Eis(I/K). As an example
beyond (1.2), the generic polynomial corresponding the 2-adic Herbrand invariant
[1, 2, 2.5] = (1, 3, 5) = ⟨0.5, 1.25, 1.875⟩ of Figures 2.1, 2.2 and 3.2 is

f(a4, a10, a15, b14, b17, b19, c8, c16, c20;π;x) = (π + π2c8 + π3c16) + π3b17x+

π2a10x
2 + π3b19x

3 + (πa4 + π3c20)x
4 + π2b14x

6 + π2a15x
7 + x8.(3.4)

Other examples are given in the next sections.

https://olive.lmfdb.xyz/padicField/family/2.1.16.79a
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Figure 3.2. Eisenstein diagram for the octic 2-adic Herbrand
invariant with means m = ⟨1, 5

2 ,
15
8 ⟩, slopes s = [1, 2, 5

2 ], and rams
r = (1, 3, 5).

Let δ ∈ {0, 1} be the number of critical D-points, and let α, β, and γ be
the number of A-points, B-points, and critical C-points respectively. Clearly
|Eis(I/K)| = (q − 1)δ+αqβ+γ . Monge reduction (see §3.5) says that |Eis(L/K)| =
(q − 1)δqγ/|Aut(L/K)|. Accordingly, one gets a mass formula

(3.5) M(I) :=
∑

L/K∈I/K

1

|Aut(L/K)|
= (q − 1)αqβ .

In the rigid case δ = γ = 0 where |Aut(L/K)| = 1 is forced, (3.5) becomes a
cardinality formula. As a non-rigid example, from 2.1.8.22d there are 32 fields in
the family (3.4), with (3.5) becoming 8(18 ) + 20( 14 ) + 4( 12 ) = 8.

The numbers M(I) in Figure 2.3 come from (3.5) with q set equal to either 2 or
3. A clarifying check on various numbers is to view the space Eisen(e/K) of degree
e Eisenstein polynomials over K as an infinite product F×

q ×Fq ×Fq ×· · · , with the
successive factors corresponding to the variables f0, f1, f2, . . . . Giving each factor
its uniform probability measure turns Eisen(e/K) into a probability space. Serre
proved in [Ser78, Thm. 2] that the chance that a random polynomial in Eisen(e/K)
is in Eisen(I/K) is the Serre mass SM(I) = M(I)/qemw . Figure 2.3 lets one see
the terms in the resulting formula

∑
I/K SM(I) = 1 for three different (p, eK).

Taking the easiest case (2, 1) as an example, there are seven families, and one can
use em2 = 2r1 + r2. The sum is the dot product (1, 2, 2, 2, 4, 4, 8) · 2−(1,3,5,5,6,7,8)

and it is indeed 1.

3.4. Slopes, means, and rams on Eisenstein diagrams. When drawing Eisen-
stein diagrams, both here and on the family pages of the database, we indicate the
slopes, means, and rams in appropriate places. There is no need to tick the vertical
axis at the left of the diagram in the traditional way, because the left endpoint of
the jth ramp is the integer j. Instead we give decimal approximations to lower edges
mk and upper edges sk. In the leftmost column, we also give the scaled versions

https://olive.lmfdb.xyz/padicField/family/2.1.8.22d
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emk and esk. These scaled versions make the subscripts on the marked points Pσ

more immediately identifiable.
The ram rk is printed to the immediate right of the upper boundary of the band

Bk. It gives two point counts as follows. First, keeping in mind that Bk includes
its lower boundary but not its upper boundary, the number of drawn points in Bk

of index at most k is ⌈rk⌉. Second, the total number of red diamonds on or below
the top edge of Bk is ⌊rk⌋.

We have just given two interpretations of rams, but there are two easier ones.
For these further interpretations, it is useful to scale rams to

small rams r∗k =
(p− 1)rk

ϵpk
and tiny rams r′k =

rk
ϵpk

.(3.6)

Then

r∗k = mk −mk−1 and r′k = sk −mk.(3.7)

Together with the standing convention s0 = m0 = r0 = 0, these simple equations
give the complete relations between slopes, means, and rams. So the tiny ram r′k
is immediately visible as the vertical width of the kth band.

The set of Herbrand invariants I = (r1, . . . , rw)
f
ϵ compatible with a given ground

field K has an appealing geometric description if one uses small rams. Namely
(r∗1 , . . . , r

∗
w) must be in the cube (0, eK ]w, with all rk geometric if it is in the interior

(0, eK)w. The hook Hj of §2.4 indicates a part of the boundary of [0, j]2. In our
Eisenstein diagrams, arithmetic bands, meaning the ones where r∗k = (p − 1)r′k is
an integer, as discussed in §2.4, are marked by a black segment at their right end.
Thus the bottom two bands in 3.1.27.99c are marked, while the top one is not.

3.5. The Herbrand function and Monge reduction. Of the four versions
(2.2)-(2.5) of totally ramified Herbrand invariants, the only one that is not imme-
diately evident from an Eisenstein diagram is the first one, involving the classical
Herbrand function ϕ. To read ϕ off from an Eisenstein diagram, one can think of
a particle starting at time r = 0 at the point P0 = (0, 0) and moving up the spiral.
The particle starts at a speed of pw steps per second, where moving from Pσ to
Pσ+1 counts as a step. Every time the particle crosses the top edge of a band it
decreases its speed by a factor of p. This is a natural definition of speed, because
the particle encounters C-points exactly at positive integral times. At any time
r ∈ R≥0, the particle has traveled some number of ramps s ∈ R≥0. Then, as in
Figure 2.2, s = ϕ(r).

The Monge reduction algorithm iteratively simplifies a given Eisenstein polyno-
mial without changing the field it defines. Its general nature can be understood in
terms of the moving particle. At the initial D-point a change of variables is made
trying to make f0 = 1. At each subsequent C-point Pσ a change of variables is
made trying to make fσ = 0. These changes to fσ also change some of the fσ′

for σ′ > σ. When the particle passes out of the drawn window, the complicated
process can be stopped. Instead one can just turn all the fσ with σ > esw to 0,
as this change does not affect the field defined, by an effective version of Krasner’s
Lemma.

The reduction process is completely successful at negligible points but only par-
tially successful at critical points. If one simply does not make the coordinate
change at critical points, then one gets a surjection from the infinite set Eisen(L/K)
to the (q − 1)δqγ-element set Eis(L/K). If one makes the coordinate changes at

https://olive.lmfdb.xyz/padicField/family/3.1.27.99c
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the critical points as well, then the ambiguity from a critical D-point reduces from
q − 1 to gcd(q − 1, ϵ), and the ambiguity from a critical C-point at the top of ρ
bands reduces from q to at most gcd(q, pρ). Multiplying these bounds together
gives an ambiguity constant Amb(I/K). It depends on K only through q and is
a divisor of the integer Amb(I) introduced in §2.3. The full reduction algorithm
gives a surjection from Eisen(L/K) to a subset of Eis(L/K) of size a divisor of
Amb(I/K)/|Aut(L/K)|. The sequel [GRJK+] implements the full algorithm, and
moreover deterministically chooses a distinguished polynomial from the set of out-
puts.

4. Sample families

This section is aimed at facilitating the reader’s exploration of the database.
It summarizes the internal structure of several families, emphasizing topics which
support the more theoretical discussions of the next section.

4.1. Partitions of the introductory family [ 12 ,
3
2 ]/Q3. All absolute families are

naturally partitioned in two related ways, into subfamilies and into packets. The
subfamilies are determined by using the coefficients corresponding to points at the
bottoms of bands; these are d0, the aσ, and sometimes also some bσ, as discussed in
[GRJK+] in the context of residual polynomials. Our naming convention for fields
incorporates subfamilies, because subfamilies are both elementary and important.

a3 a10 b11 b13 HSC G

1 1 1 0 [ ]2 9T5

1 1 0, 2 0, 1, 2 [1]2 9T10

1 1 1 1, 2 [ ]32 9T11

1 2 1 0, 1, 2 [1]22 9T18

1 2 2 0, 1, 2 [ 12 ,
2
3 ]

2
2 9T24

1 2 0 0, 1, 2 [ 12 , 1]
2
2 9T24

a3 a10 b11 b13 HSC G

2 1 2 2 [ ]2 9T3

2 1 2 0, 1 [ ]32 9T10

2 1 0 0, 1, 2 [1]2 9T10

2 1 1 0, 1, 2 [1]2 9T11

2 2 1 0, 1, 2 [ ]22 9T8

2 2 0, 2 0, 1, 2 [ 12 , 1]
2
2 9T24

Table 4.1. Partitions of the introductory family [ 12 ,
3
2 ]/Q3 =

3.1.9.18b into four subfamilies and ten packets.

Giving a name to a concept introduced in §1.2, we say that two fields are in
the same packet if they have the same Galois group G and the same hidden slope
contentHSC. The database has (G,HSC) for all its fields in degree ≤ 15. However
since G and particularly HSC can be hard to compute in higher degrees, packets
are not incorporated into our labeling scheme.

As the sample family of this subsection, we reconsider the family [12 ,
3
2 ]/Q3 of

the introduction. Its generic polynomial from (1.2) is 3+ 9a10x+9b11x
2 +3a3x

3 +
9b13x

4 + x9. Table 4.1 breaks the 36 fields into four subfamilies of nine fields each,
according to the values of (a3, a10). The canonical cubic subfield is defined by the
Eisenstein polynomial 3 + 3a3y + y3, so the relative families discussed at the end
of §1.3 correspond to the left and right halves of Table 4.1. In a more complicated
way, the table breaks the family into its ten packets. Thus the packet discussed in
§1.2 is given in the second from bottom line in the left half.

https://olive.lmfdb.xyz/padicField/family/3.1.9.18b
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4.2. Easy linear packets in [ 32 ]5/Q3. The family [ 32 ]5/Q3 with LMFDB label
3.1.15.29a has a very simple packet structure as follows. The generic polynomial
is 3 + 9(b16x+ b17x

2 + b19x
4 + b20x

5 + b22x
7) + x15. Specializing via bσ ∈ {0, 1, 2}

gives 35 = 243 polynomials bijectively representing the 243 fields of the family. If
the list (b16, b17, b19, b22) starts with exactly 0, 1, 2, or 3 zeros, then the hidden
slope content is [j/10, j/10, j/10, j/10]42 for j = 13, 11, 7, 1, and the Galois group is
15T64 = C4

3 : (S3×F5). If the list is simply (0, 0, 0, 0), then the hidden slope content
is [ ]42, and the Galois group is 15T11 = S3 × F5. The fact that the coordinates
bσ render the packet structure transparent is an example of the “important bonus”
mentioned after (1.2).

4.3. Complicated linear packets in [2]7/Q2. The family [2]7/Q2 with LMFDB
label 2.1.14.27a has generic polynomial

(2+4b14+8c28)+4
(
b15x+ b17x

3 + b19x
5 + b21x

7 + b23x
9 + b25x

11 + b27x
13
)
+x14.

There are sixteen packets (G,HSC), with the hidden slope content HSC always
determining the Galois group G. The possibilities for the wild slopes are in-
dexed by the set {13, 5, 3, ∅}× {11, 9, 1, ∅}. Here an index j generically contributes
[j/7, j/7, j/7] but ∅ contributes the empty list. Inspecting the database shows that
the list of wild slopes does not depend on b21 and c28. Table 4.2 shows the depen-
dence on the remaining coefficients. In the displayed vectors, each ⋆, v, or d can be
independently 0 or 1, except that the d’s must sum to an odd number and the v’s
to an even number.

11 9 1 ∅
13 (1, 0, ⋆, ⋆, ⋆, ⋆) (1, 1, 1, ⋆, ⋆, ⋆) (1, 1, 0, d, d, d) (1, 1, 0, v, v, v)
5 (0, 1, ⋆, ⋆, 0, ⋆) (0, 0, 1, 1, ⋆, ⋆) (0, 0, 0, 1, ⋆, 1) (0, 0, 0, 1, ⋆, 0)
3 (0, 1, d, 1, d, ⋆) (0, 0, 1, 0, 0, ⋆) (0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 1, 0)
∅ (0, 1, v, 1, v, ⋆) (0, 0, 1, 0, 0, ⋆) (0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0)

Table 4.2. The hidden slope stratification of the family [2]7/Q2,
with vectors (b15, b17, b19, b23, b25, b27) indicating coefficients.

4.4. Families [1, . . . , 1]/Qp. Families where ϵ = 1 and there is just a single wild
slope s repeated w times are easier, because there are no hidden wild slopes and
Galois groups can be completely determined as in Theorem 8.2 of [GP12]. The case
where s = 1 is particularly interesting for several reasons. This subsection focuses
on the families [1, . . . , 1]/Qp, there being one for each prime power pw, using the
particular family [1, 1, 1, 1]/Q2 as an example.

The generic polynomial for the 2-adic Herbrand invariant [1, 1, 1, 1] is

(4.1) π
(
(1 + πc16) + b8x

8 + b12x
12 + b14x

14 + a15x
15
)
+ x16.

A field L/Q2 in [1, 1, 1, 1]/Q2 has one or two representing polynomials according
to whether b8 + b12 + b14 is even or odd. In the latter case, the two polynomials
differ only in the coefficient c16. The polynomial with c16 = 0 is our choice of
distinguished polynomial. Table 4.3 presents information directly available on the
family page for [1, 1, 1, 1]/Q2, in a form slightly modified to support the discussion
here. In the first column, ℓ indexes the subfamily and i indexes the field within

https://olive.lmfdb.xyz/padicField/family/3.1.15.29a
https://olive.lmfdb.xyz/padicField/family/2.1.14.27a


FAMILIES OF p-ADIC FIELDS 17

ℓ.i b8 b12 b14 c16 Associated polynomial a u [j0, j1, j2, j3, j4]
1.1 0 0 0 0 (y + 1)4 2 4 [1, 3, 7, 15, 30]
1.2 0 0 0 1 (y + 1)4 2 4 [1, 3, 7, 15, 32]

2.1 0 0 1 0 y4 + y + 1 1 15 [1, 3, 7, 14, 31]

3.1 0 1 0 0
(
y2 + y + 1

)2
1 6 [1, 3, 6, 12, 31]

4.1 0 1 1 0 (y + 1)
(
y3 + y2 + 1

)
2 7 [1, 3, 6, 15, 30]

4.2 0 1 1 1 (y + 1)
(
y3 + y2 + 1

)
2 7 [1, 3, 6, 15, 32]

5.1 1 0 0 0 y4 + y3 + 1 1 15 [1, 2, 4, 8, 31]

6.1 1 0 1 0 (y + 1)2
(
y2 + y + 1

)
2 6 [1, 2, 4, 15, 30]

6.2 1 0 1 1 (y + 1)2
(
y2 + y + 1

)
2 6 [1, 2, 4, 15, 32]

7.1 1 1 0 0 (y + 1)
(
y3 + y + 1

)
2 7 [1, 2, 7, 15, 30]

7.2 1 1 0 1 (y + 1)
(
y3 + y + 1

)
2 7 [1, 2, 7, 15, 32]

8.1 1 1 1 0 y4 + y3 + y2 + y + 1 1 5 [1, 2, 7, 14, 31]

Table 4.3. Information on the 12 fields 2.1.16.30aℓ.i in the
family 2.1.16.30a

the subfamily. The jump sets [j0, j1, j2, j3, j4] are discussed in general in §5.2.
Commonly, a family gives rise to just a very few jump sets, often just one. This
family, and conjecturally all the [1, . . . , 1]/Q2, have the unusual feature that the
jump set determines the field.

The general case [1, . . . , 1]/Qp has a generic polynomial of a form similar to (4.1).
Write vw = apw−1 and vj = bpw−pw−j for j = 1, . . . , w − 1. Then the parameters
in the generic polynomial are v1, . . . , vw and also cpw . Let L/Qp be the field
defined by the parameters (v1, . . . , vw; cpw). Let g be an element of GLw(Fp) with
characteristic polynomial

(4.2) f(y) = yw +

w−1∑
j=0

vw−jy
j .

Then the Galois group of Lgal/Qp is the semidirect product Fw
p ⋊ ⟨g⟩ [GP12, Theo-

rem 8.2]. Here the wild inertial group is Fw
p , the tame quotient of inertia has order

one, and the unramified quotient is ⟨g⟩. Thus the hidden slope content is simply [ ]u,
where u is the order of g. For the case pw = 24, Table 4.3 gives these polynomials
in factored form. The residual polynomials given in the database can be obtained

from f(y) by replacing each yi with z2
i

and dividing by z. The database gives the
Galois groups in the usual way, from the smallest group 16T166 = F4

2⋊C4 = C2 ≀C4

to the largest group 16T447 = F4
2 ⋊ C15 = F16.

The various phenomena discussed in the example of 24 generalize to pw. A field
L/Qp has either one or p representing polynomials according to whether f(1) is
different from or equal to zero in Fp. In the latter case, the polynomials again
differ only in the coefficient cpw and again cpw = 0 gives our choice of distinguished
polynomial. So, as illustrated on the table for 24, the automorphism number a =
|Aut(L/Qp)| is p if f(y) has a factor (y − 1) and 1 otherwise. Going further, the
subfields of L/Qp are in natural bijection with the factors of f(y) in Fp[y], with

https://olive.lmfdb.xyz/padicField/2.1.16.30a1.1
https://olive.lmfdb.xyz/padicField/2.1.16.30a1.2
https://olive.lmfdb.xyz/padicField/2.1.16.30a2.1
https://olive.lmfdb.xyz/padicField/2.1.16.30a3.1
https://olive.lmfdb.xyz/padicField/2.1.16.30a4.1
https://olive.lmfdb.xyz/padicField/2.1.16.30a4.2
https://olive.lmfdb.xyz/padicField/2.1.16.30a5.1
https://olive.lmfdb.xyz/padicField/2.1.16.30a6.1
https://olive.lmfdb.xyz/padicField/2.1.16.30a6.2
https://olive.lmfdb.xyz/padicField/2.1.16.30a7.1
https://olive.lmfdb.xyz/padicField/2.1.16.30a7.2
https://olive.lmfdb.xyz/padicField/2.1.16.30a8.1
https://olive.lmfdb.xyz/padicField/family/2.1.16.30a
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the field coming from a degree k factor having degree pk. So there are all together∏
(mj+1) subfields, where

∏
j fj(y)

mj is the factorization of f(y) into irreducibles.

5. Theoretical connections

Consider finite extensions K of Qp inside of a fixed algebraic closure Qp. A
natural goal, which seems a long way off or perhaps not obtainable at all, is to find
a group-theoretical description of each absolute Galois group Gal(Qp/K) together

with its descending filtration by the higher ramification groups Gal(Qp/K)s. There
are however many deep theorems towards this goal. In this section, we describe
ways in which the database interacts with these theorems, rendering them more
explicit.

5.1. Extensions with a given Galois group. An overview of many powerful and
explicit results on absolute Galois groups is given in [NSW08, VII§5]. Highlights
are as follows. Let Knil be the maximal extension of K which for which the Galois
group is a pro-p-group; here nil stands for nilpotent. Shafarevich proved in the
1940s that Gal(Knil/K) is free on [K : Qp] + 1 generators if K does not contain
pth roots of unity. Demushkin proved in the 1950s that it can always be presented
with [K : Qp] + 2 generators and one explicit relation, with an example being

(5.1) Gal(Qnil
2 /Q2) = ⟨x, y, z|x2y4x−1y−1xy⟩.

In the 1980s, Jannsen and Wingberg gave a complete description of Gal(Qp/K) for
p odd, and then Diekert did the same for p = 2, assuming K contains fourth roots
of unity. All these results are silent on the ramification filtration.

For a finite group G, let G/K be the set of Galois extensions Lgal/K in Qp/K

with Gal(Lgal/K) ∼= G. These presentations let one compute cardinalities |G/K|.
Many completely explicit examples are given in [Roe19, §4] for K = Qp. For
example, let P8 be the Sylow 2-subgroup of S8. Then from (5.1) one eventually gets
|P8/Q2| = 48. Switching language to our context of general extensions, let nTj/K
be the set of isomorphism classes of degree n extensions L/K with Gal(Lgal/K) =
nTj. Then one can multiply by a constant associated to nTj to get the cardinality
|nTj/K|. For example, over any field, each P8 Galois extension comes from eight
isomorphism classes of abstract 8T35 extensions, and so |8T35/Q2| = 8 · 48 = 384.

The database lets one search by Galois group and see ramification behavior not
covered by the theorems. Continuing the example of 8T35/Q2, the database shows
that they are distributed among eight families 2.1.8.C as summarized in Table 5.1.
The table gives some indication of the nature of each of the families, including its
total mass M and the mass m coming from 8T35 fields. Each 8T35 field has mass
1
2 and the sum 192 of the m is indeed 384/2. The part of the family consisting
of 8T35 fields is always easy to describe. For example, it is the locus where the
coefficient b4 = 0 in the first-listed family 21a. When the number P of packets is
at most 3, the remaining mass is evenly split among the remaining possible groups
8Tj.

In general, the organization of p-adic fields into families provides a framework for
further investigation into ramification. There are many resolvent maps n′Tj′/K →
nTj/K coming from Galois theory over arbitrary fields. The coordinates D0, aσ,
bσ, and cσ can be used to describe these maps in a concise and uniform way.
Returning to the example, consider an 8T35 extension L = K[x]/f(x). If f(x)
is generically chosen then the degree twenty-eight resolvent corresponding to the
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C M s1 s2 s3 m Hidden slopes P Other 8Tj
21a 32 1 1 2.75 16 2 2.5 2.5 2 8T38
24d 16 1 2.5 2.75 16 1 2 2.5 1
25b 32 1 2 3.25 16 1 2.5 3 3 8T21 8T31
26b 32 1 2.5 3.25 16 1 2 3 3 8T19 8T29
27a 64 1 2.5 3.5 32 1 2 2.5 or 3 7 (five groups)
29a 64 2 2.5 3.75 32 1 3 3.25 3 8T28 8T30
30a 64 2 3 3.75 32 1 2.5 3.25 3 8T27 8T30
31a 128 2 3 4 32 1 2.5 3.25 14 (ten groups)

192

Table 5.1. The distribution of the 384 octic extensions of Q2 with
associated Galois group 8T35 into eight families 2.1.8.C

subgroup S6×S2 of S8 factors into irreducibles as f4(x)f8(x)f16(x). The extension
L′ = K[x]/f8(x) is one of L’s seven different siblings, the others then being easily
obtainable either by a degree 35 resolvent construction or by certain quadratic twists
[JR08, Figure 3.1]. The horizontal lines in Table 5.1 indicate that for K = Q2 one
has family interchanges 21a ↔ 24d, 25b ↔ 26b and 29a ↔ 30a under this operation
L ↔ L′. Note that the set of six wild slopes is preserved in each of the three family
interchanges as it must be. The 8T35 parts of the families 27a and 31a are closed
under operation L ↔ L′.

5.2. Making cyclic cases explicit via jump sets. The natural goal of identify-
ing the filtered group Gal(Qp/K) was reached nearly a century ago at the much sim-

pler level of understanding the filtered abelianization Gal(Kab/K). Namely local
class field theory identifies Gal(Kab/K) with the profinite completion of the mul-
tiplicative group K× with the inertia group being sent to the unit group U = O×.
For j a positive integer and s ∈ (j, j + 1], the group Gal(Kab/K)s is sent to the
j-unit group Uj = 1 + Πj .

However this theoretically ideal solution does not immediately answer some very
basic concrete questions. One such question is, what is the set Cw(K) of Herbrand
invariants [s1, . . . , sw] coming from cyclic extensions of K of degree pw? In other
words, for what families [s1, . . . , sw]/K is (G,HSC) = (Cpw , [ ]) one of the packets.
One certainly needs the sk to form a strictly increasing sequence of positive integers.
But to go beyond this statement, one needs to understand the filtered group U1.

Suppose the p-primary torsion in U1 has order pv. Then U1 is isomorphic to
(Z/pv)× ZnK

p . Thus the free vs. one-relator distinction from the beginning of §5.1
is visible at this abelian level. In the free case v = 0, the set Cw(K) depends
only on eK and is given below. In the one-relator case v ≥ 1, the situation is
much more complicated and Cw(K) depends on an invariant jK extracted from the
abelianization of the relation given in (5.2) below. The database tabulates jK , with
instances having been given in Table 4.3.

The description of Cw(K) involves combinatorial notions, as follows. For a prime
p and and a positive integer e, define ρp,e : Z≥1 → Z≥1 by ρp,e(i) = min(pi, i+ e).
Table 5.2 draws ρp,e in three cases by organizing Z≥1 into e columns. Always
ρp,e(i) is the number immediately above i in its column. Let Tp,e be the set of
non-images of ρp,e, thus the e numbers underlined and in bold at the bottom of

https://olive.lmfdb.xyz/padicField/family/2.1.8.21a
https://olive.lmfdb.xyz/padicField/family/2.1.8.24d
https://olive.lmfdb.xyz/padicField/family/2.1.8.25b
https://olive.lmfdb.xyz/padicField/family/2.1.8.26b
https://olive.lmfdb.xyz/padicField/family/2.1.8.27a
https://olive.lmfdb.xyz/padicField/family/2.1.8.29a
https://olive.lmfdb.xyz/padicField/family/2.1.8.30a
https://olive.lmfdb.xyz/padicField/family/2.1.8.31a
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columns. A jump set of length w is a sequence [s1, . . . , sw] satisfying the initial
condition s1 ∈ Tp,e and an inductive condition. The inductive condition requires
that for k ≥ 2 one has sk ≥ ρp,e(sk−1), with sk ∈ Tp,e if strict inequality holds. Let
Jw(p, e) be the set of jump sets of length w. If p− 1 divides e there is also a notion
of extended jump set. Here Tp,e is simply replaced by T ∗

p,e = Tp,e ∪ {pe/(p − 1)},
the extra point being indicated by bold italic in Table 5.2.

The set Jw(p, e) of jump sets and the set J∗
w(p, e) of extended jump sets can be

understood as the set of ways of climbing a “rock wall.” There are choices at the
very beginning, but as soon as one reaches eK/(p − 1), marked by a light band
in the table, the rest of the climbing path is forced to be vertical. The diagram
splits into a part beneath eKp/(p − 1), marked by a dark band, and the part on
or above eKp/(p− 1). We call the lower part geometric, because it agrees with the
case (p,∞) corresponding to Fq((t)), and the upper part arithmetic. Table 5.2 also
gives some sample counts, for w = 1, 2, 3, . . . . The count for the last printed w
also holds for all subsequent w.

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1
(p, e) = (3, 6)

|Jw(3, 6)| = 6, 12

|J∗
w(3, 6)| = 7, 15

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

(p, e) = (2, 8)

|Jw(2, 8)| = 8, 24, 42, 53
|J∗

w(2, 8)| = 9, 23, 53, 69

20
19

18
17

16
15

14
13

12
11

10
9

8
7

6
5

4
3

2
1

(p, e) = (3, 9)

|Jw(3, 9)| = 9, 22, 26

Table 5.2. Arrangements of the positive integers into e columns
for understanding jump sets. Bands are actually just convenient
thickenings of the lines at heights eK/(p−1) and eKp/(p−1), and
they are drawn as lines when these heights are not integral.

The desired identification for v = 0 is Cw(K) = Jw(p, eK). As a trivial ex-
ample, for p > 2 one has the familiar Cw(Qp) = Jw(p, 1) = {[1, . . . , w]}. A
partial answer for v ≥ 1 is that Cw(K) ⊆ J∗

w(p, eK). As a simple example,
J∗
w(Q2) = {[1, 2, . . . , w], [2, 3, . . . , w+1]}. While C1(Q2) = {[1], [2]} is all of J∗

1 (Q2),
otherwise Cw(Q2) = {[2, 3, . . . , w + 1]}.

In the v ≥ 1 case where K contains a primitive pth root of unity ζp, the next
step towards a complete answer goes as follows. Building on Hasse [Has02, Ch. 15],
Miki [Mik81, Lem 17] showed that one can write

(5.2) ζp = αpw

0 αpw−1

1 . . . αp
w−1αw
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with each αi satisfying one of the following conditions:

• vK(αi) < peK/(p− 1) and p ∤ vK(αi),
• vK(αi) = peK/(p− 1) and αi is not a pth power,
• αi = 1.

Pagano [Pag22, §1.2] defined the extended jump set associated to K by setting
ji = vK(αi − 1) for all 0 ≤ i ≤ w such that αi ̸= 1; these values are independent of
the choice of α0, α1, . . . , αw. Undefined values in the sequence j = [j0, j1, . . . , jw]
are filled in using the recursion ji+1 = ρp,eK (ji). The remaining steps are to use
uK to identify Cw(K) as a subset of J∗

w(p, eK). This is difficult to make explicit in
general, but Pagano works out many special cases.

Pagano [Pag22, Thm. 1.11] also gave a formula for jK in terms of a defining
Eisenstein polynomial for certain cases where p ̸= 2 and all slopes of K are less
than one. The tabulation of invariants in the database using the factorization
of ζp suggests that jK might always be directly expressible in terms of Eisenstein
polynomials. For the case [1, . . . , 1]/Q2 recall from §4.4 that the generic polynomial
is written

2((1 + 2c2w) + v1x
2w−2w−1

+ · · ·+ vw−1x
2w−21 + vwx

2w−20) + x2w ,

with vw = 1. For 0 ≤ k ≤ w set Vk =
∑k

i=1 vi ∈ F2. Then we expect

jk =

 2k+1 − 1 if Vk = 0,
2jk−1 if Vk = 1 and k < w,
2w+1 + 2c2w − 2 if Vk = 1 and k = w.

We also observe the simple statement that jK = [ji] with ji = ϵ(pi − p+1)/(p− 1)
when all slopes are greater than 1. For the case (ϵ, p) = (1, 2) this formula gives
ji = 2i − 1. In particular, if w = 4 then the jump set is [1, 3, 7, 15, 31].

5.3. Nonabelian quotients with known filtrations. The complications re-
solved by jump sets in the previous subsection only became serious for w ≥ 2.
Applying the easy special case of w = 1 to tame extensions K ′ of a fixed field K
gives a large class of extensions of K which are nonabelian and wild, but still very
well understood. This situation has been studied from the point of view of primitive
extensions of K by Del Corso, Dvornicich, and Monge in [DCDM17].

To briefly summarize [DCDM17] with some more specificity about slopes, let
Kprim ⊂ Qp be the composita of all primitive extensions of K. It contains the max-

imal tame extension Ktame of K. What makes the group Gal(Kprim/K) tractable is
that its wild inertia subgroup Gal(Kprim/Ktame) has exponent p. The wild slopes
are exactly the positive rational numbers less than eKp/(p − 1) with numerator
and denominator prime to p, and then eKp/(p − 1) itself. The former occur with
infinite multiplicity but the latter occurs just with multiplicity 1. The quotient
Gal(Ktame/K) is the closure of a subgroup ⟨τ, σ|στσ−1 = τ q⟩, where τ generates
tame inertia and σ is a Frobenius element. The full group is a semidirect product
Gal(Kprim/Ktame)⋊Gal(Ktame/K) with a known action.

Consider now families I = [s, . . . , s]fϵ /K with just one visible wild slope, such
as [ 32 ]5/Q3, [2]7/Q2, and [1, . . . , 1]/Qp of §4.2, §4.3 and §4.4, respectively. The

joint splitting field KI ⊂ Kprim of all the fields L/K in I/K is governed by the
group theory just summarized. So the packets (G,HSC) that can occur can be
group-theoretically calculated.
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As an example of how group theory can explain otherwise mysterious patterns,
consider the orbits of multiplication by p on Z/(pρ−1)Z, with representatives taken

in [p
ρ−1
p−1 , p(pρ−1)

p−1 ). In the case of pρ = 23, two orbits are {8, 9, 11}, and {10, 12, 13}.
Corresponding to dropping to the bottom of a column in a (p, pρ − 1) table like
Table 5.2, remove all factors of p. The orbits in the example then become {1, 9, 11},
and {3, 5, 13}. The two triples contain the numbers in the previously mysterious
borders of Table 4.2, where one has to divide by 7 to get the hidden slopes for
[2]7/Q2. The general recipe involves dividing by pρ − 1 at the end. In the example
of [ 32 ]5/Q3 from §4.2, pr = 34 and the orbit {56, 88, 104, 72} becomes, via the drop

72 = 2332 → 8, the hidden slopes 7
10 ,

11
10 ,

13
10 , and

1
10 mysteriously appearing there.

In general, the relatively elementary nature of Gal(Kprim/K) makes us hopeful
that the explicit description of packets in the families of §4.2, §4.3, and §4.4 will
ultimately be specializations of the same uniform description for any [s, . . . , s]fϵ .

As a second example of a nonabelian quotient with a known filtration, consider
the group Gal(Knil/K) defined just before (5.1) and let Gal(Knil,p/K) be its max-
imal quotient of nilpotency class p − 1 and exponent p. In the strongest result of
its type, Abrashkin [Abr17] has identified the filtration on Gal(Knil,p/K) under the
assumption that K contains a primitive pth root of unity. For p ≥ 3, Abrashkin’s
result, when it applies, goes well past the local class field theory of the previous
subsection. However it leaves a lot of cases uncovered, as for example the Sylow
p-subgroup of Sp2 already has nilpotency class p. Thus for most of the families in
the database, there is not yet a theoretical description of packets, even in principle.

5.4. Comparing families I/K for varying K. For s a real number and K a
finite degree subfield of Qp, let K

s ⊂ Qp be the union of subextensions L/K with
all relative slopes less than s. Say that two such fields K and K ′ are j-close if there
is an isomorphism of finite rings OK/Πj

K → OK′/Πj
K′ . As an example, take K ′ to

have the same residual cardinality q as K, and with ramification index at least eK .
Then K and K ′ are eK-close, because both finite rings are isomorphic to Fq[t]/t

eK .
Deligne proved in [Del84, Th. 2.8] that if K and K ′ are j-close then Gal(Ks/K)
and Gal(K ′s/K ′) are isomorphic as filtered groups. Thus many instances of the
problem of describing filtered Galois groups have the same answer, even if we do
not as yet know the answer.

To get a particular isomorphism between the Galois groups, well-defined up
to conjugation, one needs to choose a particular isomorphism between the finite
rings. Suppose the choices of uniformizers and residue representatives made in
§3.1 are compatible with this ring isomorphism. Then the extensions L/K and
L′/K ′ given by the same specialization of the generic polynomial correspond. While
Deligne’s proof is complicated, he presents its basic idea in [Del84, §1.3] as being this
correspondence of Eisenstein polynomials. In terms of the database, the relative
parts of the family pages for I/K and I/K ′ look extremely similar, for any I with
top slope less than j.

As one of the simplest possible examples, consider the Herbrand invariant I =
[ 13 ,

1
3 ] over 2-adic fields. Its generic polynomial is π+πa1x+x4. Restricting attention

to K with residual cardinality 2, there is just one field L/K in the family I/K,
the one obtained by setting a1 = 1. For Q2, the field L0 = Q2[x]/(2 + 2x + x4)
has associated Galois group S4 with hidden slope content [ ]23. So for any K, the
relative Galois group is likewise S4 and the relative hidden slope content is likewise
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[ ]23. When one passes to absolute invariants, one naturally gets strong dependence
on K. For example, taking K to be one of the six ramified extensions of Q2 yields
trivial behavior: L is the compositum K ⊗ L0 with Herbrand invariant [ 13 ,

1
3 , s],

Galois group S4 × C2, and hidden slope content [ ]23. Here s ∈ {1, 2} comes from
the Herbrand invariant [s] of K/Q2. The unique ramified cubic extension K =
Q2[x]/(2− x3) of Q2 yields completely different behavior. Here the unique field L
is 2.1.12.12a1.1 with Galois group C6

2 .C9.C6 and slope content [ 19 ,
1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ]

6
9.

As a more complicated example, take I = [ 12 ,
2
3 ] with generic polynomial π(1 +

a3x
3 + a5x

5 + c6x
6) + x9. The page for 3.1.9.13b = [12 ,

2
3 ]/Q3 says that there

are eight fields, as c6 is required to be 0 in the parameter list (a3, a5, c6) whenever
a3 ̸= a5. The parameters (1, 2, 0) and (2, 1, 0) give fields having the same Galois
closure, with Galois group 9T18 and Galois slope content [ 12 ,

1
2 ,

2
3 ]

2
2. The remaining

six fields from (a4, a4, c6) all have Galois group 9T20 and Galois slope content
[ 12 ,

1
2 ,

2
3 ]

3
2, with the splitting field depending only on a4. Since all slopes are less

than one, Deligne’s comparison theorem says that all the facts just summarized
also hold over any K with residual cardinality 3. Going further, one can compute
via resolvent constructions that the joint splitting field QI

3 has Gal(QI
3/Q3) with

order 2438 and slope content [ 12 ,
1
2 ,

1
2 ,

1
2 ,

5
9 ,

2
3 ,

2
3 ]

6
2. So any Gal(KI/K) has the same

structure as a filtered group.
To see §5.2 in the light of the comparison theorem, let Cs

w(K) be the subset
of Cw(K) consisting of Herbrand invariants [s1, . . . , sw] with sw < s. Deligne’s
theorem says that Cs

w(K) = Cs
w(Fp((t))) holds for s = eK , but in the easy case

v = 0 the explicit descriptions says it holds for the larger integer s = peK/(p−1). It
fails for even larger integers s, as one has entered the arithmetic regime. Similarly,
consider I = [s, . . . , s]fe . Then Deligne’s theorem says the filtered group Gal(KI/K)
is isomorphic with its geometric analog Gal(Fq((t))

I/Fq((t))) if s < eK . The explicit
description of Gal(KI/K) indicated in §5.3 says that the isomorphism holds for
s < peK/(p− 1).

5.5. Canonical globalization. Our complete tabulation of degree sixteen exten-
sions of Q2 shows that the number of fields with automorphism group of size 1,
2, 4, 8, and 16 is respectively 9080, 833736, 44752, 2292, and 251. These newly-
determined numbers sum to the previously known total 890111. The complete
tabulation also gives the corresponding counts within each family. For the most
ramified family 2.1.16.79a = [2, 3, 4, 5], the numbers are 0, 63488, 968, 240, and
32, for a total of 67728.

The next step in our general approach to populating the database is to determine
the Galois group G and the hidden slope content HSC for each field. This is
an ongoing process: we have computed almost all the Galois groups using Doris’
programs [Dor20], but identifying HSC is harder. We describe here a completed
part that is of particular interest in terms of applications to number fields.

For r an odd prime, let Qr ⊂ C be the union of all finite degree Galois extensions
of Q with Galois group having order a power of 2 and ramification within {∞, 2, r}.
Then a special case [Koc02, Example 11.18] of theorems of Koch gives two related
very strong results on Qr for r ≡ 3, 5 modulo 8. Let D∞ = {1, c} where c is
complex conjugation. Let Dr be the corresponding decomposition group at the
prime r, namely Dr = ⟨τ, σ|στσ−1 = τ r⟩ understood in the category of pro-2-
groups, so that Dr has a semidirect product structure Z2 ⋊ Z2. The first result is
that Gal(Qr/Q) is the free product D∞ ∗Dr in the category of pro-2-groups. The

https://olive.lmfdb.xyz/padicField/2.1.12.12a1.1
https://olive.lmfdb.xyz/padicField/family/3.1.9.13b
https://olive.lmfdb.xyz/padicField/family/2.1.16.79a
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second result is that its 2-decomposition subgroup D2 is the entire global Galois
group Gal(Qr/Q).

For r ≡ 3, 5 (8) fixed, Koch’s result says that an extension L/Q2 with G =
Gal(Lgal/Q2) a 2-group globalizes either 0 or 1 times to a number field with dis-
criminant ±2arb and Galois group G. Typically a given field has no globalizations,
as the governing local group (5.1) has three generators and one relation, while the
governing global group also has three generators, but now has two relations, c2 = 1
and στσ−1 = τ r.

For w a positive integer, consider the subfield Qr,w generated by the subfields
of Qr of degree dividing 2w. Its r-decomposition group is a quotient Dr,w of Dr

having 22w elements and depending only on r mod 2w. So the abstract group
Gal(Qr,w/Q) = D∞ ∗Dr,w depends only on r mod 2w. Our calculations here show
that the globalizing 2-adic fields for 3 and 19 agree and the globalizing fields for 13
and 29 also agree. This extends an observation made in [JR14, §8] for octic 2-adic
fields and we do not have a proof that it holds for all r and w.

Table 5.3 illustrates the frequency of globalization. It counts the fields that glob-
alize exactly for the extra prime r being in the indicated subset R of {3, 5, 11, 13}.
There are 1131 2-adic fields that globalize to fields with discriminant ±2a, of which
274 have a = 79. So the bottom right entries, corresponding to R = {3, 5, 11, 13},
include many more always-globalizing fields.

All 677795 fields
∅ {3} {11} {3, 11}

∅ 505520 9952 9952 61158
{5} 15072 0 0 0
{13} 15072 0 0 0

{5, 13} 58076 0 0 2993

Fields in [2, 3, 4, 5]/Q2

∅ {3} {11} {3, 11}
∅ 50614 1888 1888 8734

{5} 256 0 0 0
{13} 256 0 0 0

{5, 13} 3384 0 0 708

Table 5.3. Statistics of globalization for degree sixteen exten-
sions L/Q2 with Galois group Gal(Lgal/Q2) having 2-power order.

The purely-local relevance of globalization is that it allows easier mechanical
computation of Galois groups and it facilitates the identification of hidden slopes.
Both G and HSC are in the database for all the canonically globalizing fields
just discussed. Generally speaking, the database is designed so that it can present
partial results. As of this writing, the database shows 156 packets inside the family
[2, 3, 4, 5]. The numbers appearing as hidden wild slopes so far are 2, 3, 3.5, 4, 4.25,
4.5, 4.75, 5.125, 5.25, 5.375, and 5.625.

Let Qnil,w
2 be the subfield of Qnil

2 generated by subfields of degree 2w, so that

Gal(Qnil,w
2 /Q2) is a finite quotient of the infinite group Gal(Qnil

2 /Q2) of (5.1).
Write its order as 2jw . A group-theoretical calculation says that (j1, j2, j3, j4) =
(3, 8, 25, 204). Corresponding numbers for Gal(Qr,w/Q) begin independently of r,
being (3, 7, 18). For w = 4, there is dependence on r mod 8, with p = 3 and 5
yielding 97 and 101.

We have long known the twenty-five slopes appearing in compositum Qnil,3
2 of all

nilpotent octic extensions of Q2. There are three −1’s coming from the unramified
octic extension of Q2, which is famously known not to globalize. The wild slopes
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are then

1, 1, 1, 1 1
2 , 1

1
2 , 2, 2, 2, 2 1

2 , 2
1
2 , 2

5
8 , 2

3
4 , 3, 3, 3 1

4 , 3
1
4 , 3

3
8 , 3

1
2 , 3

1
2 , 3

3
4 , 3

3
4 , 4.

The eighteen slopes that survive to the quotient group Gal(Qr,3/Q) are given for
r = 3, 5 in [JR14, §8].

The basic reason for constructing a large database is that many concrete facts
about ramification are not yet known and seem resistant to theoretical investiga-
tion. To underscore that much is not known, we conclude by asking a very concrete

question: what are the 204 slopes of Gal(Qnil,4
2 /Q2)? Basic theory says that four of

them are −1, and the rest are in [1, 5] with all denominators being powers of 2. An-
alyzing high-degree composita of the new degree sixteen fields in the database will
give many of these 204 numbers. We expect that a complete answer to the ques-
tion may be out of reach without further theoretical advances, but computational
progress can be measured by the number of slopes found.
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