
CREATING A DYNAMIC DATABASE OF FINITE GROUPS

LEWIS COMBES, JOHN JONES, JENNIFER PAULHUS, DAVID ROE, MANAMI ROY,
AND SAM SCHIAVONE

Abstract. A database of abstract groups has been added to the L-functions and Modular
Forms Database (LMFDB), available at https://www.lmfdb.org/Groups/Abstract/. We
discuss the functionality of the database and what makes it distinct from other available
databases of abstract groups. We describe solutions to mathematical problems we encountered
while creating the database, as well as connections between the abstract groups database
with other collections of objects in the LMFDB.

Contents

1. Introduction 2
1.1. Features of the database 2
1.2. Structure of the paper 3
1.3. Acknowledgments 3
2. Data overview 4
2.1. Data computed for each group 5
2.2. The isomorphism problem 6
3. Features of the database 6
3.1. Features of the search interface 7
3.2. Features of a group page 7
3.3. Subgroups 8
3.4. Dynamic constructions 10
3.5. Statistics 10
4. Computing presentations for solvable groups 10
5. Labels 11
5.1. A deterministic sequence of pseudo-random group elements 12
5.2. Conjugacy classes and divisions 12
5.3. Characters 14
5.4. Subgroups 15
6. Connections and examples 16
6.1. Connections with other objects 17

Date: October 2, 2023.
1991 Mathematics Subject Classification. 20-04, 20-08, 20Dxx.

1

https://www.lmfdb.org/Groups/Abstract/

6.2. Applications via Galois theory 17
6.3. Modular curves and subgroups of GL2(Z/NZ) 21
References 23

1. Introduction

Finite groups have played a profound role in mathematics for close to two centuries and,
almost since their inception, mathematicians have asked classification questions about them.
The quest to classify finite simple groups took up most of the 20th century. In the last 30 years
as computational power became prominent, various databases of groups have been developed.
The ATLAS of Finite Groups which contains information on interesting groups, notably
character tables, began as a book [CCN+85] and is now available online [WWT+]. The
computer algebra programs GAP [GAP21, BEO02] and Magma [BCP97] both have complete
databases of small groups up to order 2000 (except for order 1024, for which there are almost
49.5 billion distinct isomorphism classes). These computer algebra programs also include
other databases such as perfect groups (up to orders 2 · 106 and 50,000, respectively) and
transitive groups up to degrees 48 [Hul], [BCH+]. The GroupNames project [Dok] includes
groups up to order 500 (skipping orders 256 and 384) as well as additional information such
as lattice of subgroups and character tables for the groups.

1.1. Features of the database. As we note above, there are several other databases of
groups already available, so why do we need yet another one? Some of the useful features of
our database are the following.

• The database is dynamically searchable. We have precomputed and stored many
invariants and properties of the groups in the collection, and created a search interface
which allows users to search on these. For instance, if a user wants to find all groups of
order 256 with nilpotency class 6, this can be accomplished in seconds using the search
interface. (There are 38 such groups.) While in principle it may be possible to perform
these sorts of searches in a given computer algebra system equipped with a database of
groups, such a computation would likely require looping over many groups, computing
the desired invariants or properties, and then filtering out those not meeting the search
criteria, which will often be very time-consuming and computationally intensive.
• The database is free and easy to use. Use of our database requires no prior knowledge
of any computer language or computer algebra package, making it accessible to a
broad audience, from students just learning the basics of group theory, to experts
using groups in their research. While most of our computations were done in Magma,
which is closed-source and requires purchase of a license, the data we have computed
is now publicly available on the internet through the LMFDB.

2

• The database fosters connections between other collections of objects in the LMFDB.
The L-functions and Modular Forms Database (LMFDB) is a huge international
collaboration to collect, curate, and connect computational mathematical work in
number theory, particularly as it relates to the Langlands program. Groups are
attached to many mathematical objects throughout the LMFDB, from Sato-Tate
groups to automorphism groups of curves, and our database of groups facilitates more
connections between these various collections. See Figure 3 in subsection 6.1 for a
diagram illustrating these connections.
• The database aggregates groups drawn from a variety of sources. The database is
flexible, in that it can accommodate groups of various types drawn from multiple
sources, such as polycyclic, permutation, and matrix groups. See section 2 for a list
of sources used to compute the data.
• The database supports searches on subgroups. This is in some sense a special case
of the first point, but for each group in the database, we have computed and stored
information on its subgroups. Users can search for all groups containing a subgroup
with a given property; for instance, one can easily find the 12 groups of order 96 that
contain a normal subgroup isomorphic to A4. (See subsection 3.3 for more details on
the subgroup information stored.)
• The database provides a deterministic labeling of groups, their subgroups, and their
conjugacy classes. This labeling allows users to connect a particular conjugacy class or
subgroup to the corresponding one in our database in a deterministic way, regardless
of the given presentation of a group

1.2. Structure of the paper. We begin in Section 2 with information about sources for
the groups currently included in the database, and how the data about them is generated. In
Section 3 we describe the web interface and demonstrate a number of features of the database.
In the process of designing the database and computing the corresponding data, we encoun-
tered a series of challenges which required mathematical solutions. The next two sections
discuss these challenges: Section 4 describes the method by which we computed presentations
for solvable groups and Section 5 details the procedures we used to deterministically label
subgroups, conjugacy classes, and characters. In Section 6 we give examples of connections
between the Abstract groups database to other collections of objects in the LMFDB.

1.3. Acknowledgments. We owe a large debt of gratitude to Tim Dokchitser, whose Group-
Names website was the initial inspiration for our database and who generously shared code
and database expertise with us (as well as giving us permission to re-post many of the
definitions on his page as knowls on the LMFDB). We are also appreciative of the advice and
many suggestions Andrew Sutherland gave us. We are grateful for various conversations and
code from Michael Bush, Derek Holt, Alexander Hulpke, Bjorn Poonen, and David Roberts.

3

Thank you to the American Institute of Mathematics for hosting a mini-workshop where
much of the initial planning happened, and the Institute for Computational and Experimental
Research in Mathematics for a workshop where the project took off.

Roe and Schiavone were supported by the Simons Collaboration in Arithmetic Geometry,
Number Theory, and Computation via Simons Foundation grant 550033. Paulhus was
partially supported by a Frank and Roberta Furbush Scholarship from Grinnell College.
Combes was supported by the Engineering and Physical Sciences Research Council grant
EP/R513313/1.

2. Data overview

The database currently contains over 500,000 groups together with roughly 200 million
subgroups and 50 million of their irreducible complex characters.

The code used to generate the data is written in Magma [BCP97] and Python [VRD09], and
it may be found at the GitHub repository https://github.com/roed314/FiniteGroups.
The database, as with the rest of the LMFDB, uses PostgreSQL as its database management
system. Computations were carried out via a combination of an AMD Epyc 7713 server with
256 2.0GHz cores and 2TB of RAM, and a distributed computation on Google Compute
Engine, with a substantial use of GNU parallel [Tan11] in both cases.

Source Total Solvable Perm. Matrix OptimizedPC MinPerm
Small Groups 257936 257500 257746 68042 257500 257746

Transitive Groups 235919 211279 235919 218 14499 161656
Intransitive Groups 5444 2739 5444 16 2330 5378
Classical Lie Type 2201 2 1509 2201 0 1509

CARAT 189 185 186 189 174 186
GLn(Fq) Subgroups 3018 2456 3000 3018 2397 3000

GL2(Z/N) Subgroups 29771 28819 25319 29771 24323 25254
Perfect 123 0 123 1 0 123

Chevalley 13 0 7 13 0 7
Sporadic 9 0 9 7 0 9

Small Group Auto. 283 283 283 0 73 111
Transitive Group Auto. 498 438 498 0 51 201
Auto. Groups of Curves 530 527 530 0 526 530

Table 1. Number of groups by source. See Section 2 for more information.

We compute and store data on groups from various sources. Counts of groups currently in
the database from these different sources are given in Table 1. The “Total” column represents
the total number of groups in the database from that source, excluding those already shown

4

https://github.com/roed314/FiniteGroups

in a previous line. The “Solvable”, “Perm.”, and “Matrix” columns give the number of groups
from each source that are solvable, the number of groups for which we store a permutation
representation, and the number of groups for which we store a matrix representation (over Z,
Fp, Fq, or Z/N), respectively. The “OptimizedPC” column counts how many groups from
that particular source include an optimized polycyclic presentation (see Section 4), meaning
a presentation guaranteed to have a minimal number of generators, and “MinPerm” gives the
number of the groups for which we know a minimal degree permutation representation.

Roughly half of the data is initiated from the small groups database in Magma [BE99a,
BE99b, BEO01, O’B90, BE01, O’B91, NOVL04, OVL05, DE05, DE12, DEP22]. All groups
of order up to 2000, except those whose order is larger than 500 and divisible by 128,
are included. Most of the remaining groups come from the transitive groups database
[Hul05, CH08, HR20], from which we include all groups of degree up to 47 except those of
degree 32 with order between 512 and 40 billion. Note that our notion of equivalence is
abstract isomorphism rather than conjugacy within Sn; the work to divide the transitive
groups into isomorphism classes is described briefly in subsection 2.2. In addition to the
small group and transitive group databases, we use the following sources:

• classical Lie groups up to particular bounds, and Chevalley groups that don’t already
show up as classical Lie groups [Tay87, RT98, HRT01];
• additional intransitive groups which are subgroups of S15 not currently in the database,
computed using the Magma Subgroup command;
• all integer matrix groups of dimension up to 6 from CARAT [OPS08];
• subgroups of GLn(Fq) computed via Magma for n = 2 (q < 1000), n = 3 (q < 16),
n = 4 (q < 7) and n = 5 (q = 2);
• subgroups of GL2(Z/NZ) for N up to 125 (skipping 80, 96, 104, 112 and 120);
• all perfect groups of order up to 50,000 from the corresponding database in Magma;
• the sporadic groups J1, J2, HS, J3, McL, He, Ru, Co3, and Co2 with permutation
and matrix representations taken from the Atlas of Sporadic Groups [WWT+];
• automorphism groups of curves up to genus 48 [Bre00], and “large” automorphism
groups (of order > 4(g − 1)) of curves up to genus 101 [Con10].

Since the automorphism group of small groups can be much larger than the groups
themselves, we also include all automorphism groups of groups of order up to 255 and of
transitive groups of degree up to 23.

2.1. Data computed for each group. For each group, we compute as many attributes
as possible. Some use commands directly from Magma, such as determining if a group is
abelian, while others require special functions we wrote (for example, determining if a group
is metacyclic). We compute a “reasonable” presentation for the group (see Section 4), a
minimal degree permutation representation, the lattice of subgroups up to automorphisms

5

of the group, and up to conjugacy when possible (Section 3.3), and conjugacy classes and
the character tables when feasible. We also determine special subgroups such as the center,
commutator, Frattini, and Fitting subgroups, as well as various series for the group.
♠♠♠ Sam: [Move this paragraph to §3.3?] We aim to compute the full lattice of subgroups,

but there are many groups in our database where it is infeasible to compute subgroups up
to conjugacy. For example, C10

2 has 229,755,605 subgroups, none of which are conjugate.
However, it only has 11 classes of subgroups up to automorphism. We implemented the
computation of the subgroup lattice up to automorphism and improved on Magma’s built-
in subgroup lattice methods up to conjugacy. In some cases, such as S47, working up to
automorphism does not sufficiently reduce the quantity of subgroups, so we restrict our
attention to normal subgroups and their complements, maximal subgroups, Sylow subgroups,
subgroups with small index and/or trivial core due to their importance in permutation
representations.

The subgroup lattice is one example of the general challenge that many of our quantities
of interest become more difficult to compute as the size or degree of the group increases. Our
general approach is to try to compute everything for all groups, setting appropriate timeouts
and omitting data if the computation does not finish or if we encounter errors in Magma. We
have developed additional code for some problems where Magma’s built-in methods were
insufficient for our purposes; notable examples include computing quotients of permutation
groups and isomorphism testing.

2.2. The isomorphism problem. When adding transitive permutation groups to our
abstract group database, we had to ensure that groups with multiple transitive permutation
representations were only added once each. For small groups, Magma will compute its small
group identification number. In a larger range, the LMFDB’s transitive group section already
had the needed information. However, there were multiple cases where neither approach
sufficed.

Running isomorphism tests can be time consuming, so we used the following strategy. We
took multiple isomorphism invariants of a group which are quick to compute and combined
them into a hash. This could be precomputed for large numbers of groups. Groups with
different hashes were clearly non-isomorphic. If groups produced identical hashes, we then
had Magma perform a slower, but conclusive test for isomorphism. Our hash was highly
effective in distinguishing non-isomorphic groups. Full details will be given in the forthcoming
article [Roe].

6

3. Features of the database

The database is viewable through the LMFDB website at https://www.lmfdb.org/
Groups/Abstract/. In this section we describe how to navigate the web interface, and
highlight some particular features.

3.1. Features of the search interface. Groups can be searched through numerous query
types, for example: the isomorphism type of a group’s automorphism group, commutator,
center, abelianization, Frattini subgroup, etc.; the order of any of these and the group itself;
and many boolean properties such as nilpotency, simplicity, and solubility. With the search
interface, it is easy to quickly answer questions such as “What are the nilpotent groups of
order 36?” and “Are there any groups of order 256 with abelianization C2 × C2?” In this
way, the database provides a useful service to researchers looking for groups with particular
properties, as well as students coming to grips with the basics of group theory. It is also
possible to search for groups whose orders factor in a particular way. For example, groups
whose order is of the form p3q2r for primes p, q, r can be queried with the string [3, 2, 1].

There is a curated list of some interesting groups that one can quickly access, and one can
view the home page of a group picked randomly from the database as well. Each abstract
group has a unique label attached to it (see Section 5 for more details), and one may search
for a specific abstract group using its label or by a name such as “S5”.

3.2. Features of a group page. On individual group pages, information is organized
roughly by topic. Constructions of the group via a presentation (see section 4), and direct,
semidirect and non-split product are given when possible, as well as representations as a
matrix or permutation group. Homology information like Schur multiplier and commutator
length are provided. Special subgroups like the center, commutator and socle are displayed.
For many groups we provide a subgroup diagram up to conjugacy and up to automorphism
(see section 3.3). We also display the derived series, chief series, and upper and lower central
series of the group. Groups for which the given group is a maximal subgroup or a maximal
quotient are listed under Supergroups.

Groups are also represented pictorially, in line with other sections of the LMFDB. Each disc
in a group picture represents a conjugacy class of elements, arranged in an annulus around
the middle class (of the identity), with distance according to number of prime factors in the
class’s order. A disc’s size and color are chosen based on its order. The decisions on how to
display a group in picture form are essentially a matter of taste, with some group pictures
showing striking symmetries within the conjugacy classes, such as 480.60 in Figure 1.

For many groups we provide character tables for both complex and rational characters.
When the data has been computed but the table is too large, the user is provided with a
link to display the table. Rows correspond to irreducible characters, columns correspond to
conjugacy classes for the complex character table and divisions for rational character table.

7

https://www.lmfdb.org/Groups/Abstract/
https://www.lmfdb.org/Groups/Abstract/
https://www.lmfdb.org/Groups/Abstract/interesting
https://www.lmfdb.org/Groups/Abstract/random
https://www.lmfdb.org/Groups/Abstract/480.60

Figure 1. Group picture of 480.60

For ease of terminology, in this discussion we refer to columns as corresponding to “classes”
to cover both cases simultaneously.

As is standard, the row(s) above the table contain power map information on classes. For
each prime p dividing the order of the group and class represented by an element g, the
entry above that column in the row labeled “pP” gives the label for the class of gp. For each
complex character, in the 2nd column of the table we designate whether the representation is
real, complex, or quaternionic.

3.3. Subgroups. One of the main features of our work is a companion database of subgroups.
Subgroups have their own search functionality and labeling system (see subsection 5.4). Given
a group H, it is possible to search the database for all groups G containing H as a subgroup,
subject to numerical constraints such as the index of H in G and the order of G. Cyclic
subgroups, normal subgroups, or Sylow or Hall subgroups of a group can all be searched for.
Each subgroup also has its own page. These pages give information about the ambient group
and the quotient group structure (when normal). Related subgroups such as the centralizer,
normalizer, normal closure and core of the subgroup are given.

The subgroup database allows us to display the subgroup lattice for many groups. This
lattice is algorithmically very useful, allowing the computation of the rank of a group, its
expressions as a semidirect product, etc. Magma has built-in methods for computing both
the subgroup lattice and the list of subgroups up to conjugacy (without inclusions). We
found that the second was much faster than the first, and that we could recover the inclusions
more quickly by computing a vector counting the intersections with each conjugacy class: if
H1 ⊆ H2 then the vector of counts for H2 dominates that for H1, dramatically decreasing the
number of calls to IsConjugateSubgroup. When there are many subgroups up to conjugacy

8

https://www.lmfdb.org/Groups/Abstract/480.60

(e.g., abelian p-groups), we instead compute subgroups up to automorphism. The first
algorithm for doing so uses the holomorph of G, i.e., the semidirect product G o Aut(G).
Conjugacy within the holomorph translates to automorphism in the group itself, and a code
snippet kindly provided by Derek Holt using lifting through an elementary abelian series
allowed for the computation of representatives of subgroups up to automorphism in the
solvable case without computing the list up to conjugacy.

However, the holomorph is implemented in Magma as a permutation group of degree
equal to the order of G, and as the size of G grows, computations using the holomorph bog
down. For nonsolvable G and G with order at least 5000, we switch to a graph theoretic
algorithm. First we compute a list of subgroups up to conjugacy, together with a list of
automorphisms that generate the outer automorphism group of G. Taking subgroups up to
conjugacy as vertices, we add an edge between H1 and H2 if there is an outer generator σ
with σ(H1) conjugate to H2. The components of the resulting graph give the subgroups up
to automorphism.

The subgroup lattice can be viewed on a group page when it has fewer than 100 subgroup
classes; see Figure 2 for an example. Inclusion is indicated with lines, and clicking a particular
subgroup reveals information about its properties, e.g., whether it is maximal, solvable, its
normalizer, its core, etc. Subgroups are separated into levels vertically based on their orders
or by the number of prime factors in their order (the user can toggle between these two
options), and can be rearranged by clicking and dragging. When the diagram is too large to
conveniently display on the page, the full diagram can often be viewed on a separate linked
page.

Figure 2. Subgroup diagrams of 18.4 up to conjugacy and autjugacy, as they
appear on the LMFDB

In addition, we provide profiles of the subgroups up to automorphism and possibly up
to conjugation. For each order of subgroup, the profile lists the isomorphism types and
multiplicities of classes of subgroups with that type. For example, for the elementary abelian

9

https://www.lmfdb.org/Groups/Abstract/18.4

group C5
2 , the profile for subgroups up to conjugation would list 155 conjugacy classes of

subgroups of order 8 (all isomorphic to C3
2), and one class of subgroups of the same order up

to automorphism.

3.4. Dynamic constructions. While the database is finite, we still provide some function-
ality for some groups outside the database. For two classes of groups, we do computations on
the fly to provide information to the user. Since pages need to be rendered quickly, these
pages have less data than the group home pages for groups stored in the database.

The first type of group which is handled dynamically are groups in GAP’s small group
database, but which are not in the LMFDB collection. For these groups, we use GAP to
compute data while rendering the page, since GAP is incorporated into SageMath. As an
example, the group 256.501, one of the seven nontrivial split extensions of C2 by OD128, has
automorphism group 512.402873. This group of order 512 is not in the database, but there
is still a dynamically generated page with some basic information about the group such as
statistics on the number of elements and conjugacy classes of each order, counts of irreducible
characters of each degree, the list of maximal subgroups up to conjugacy and basic subgroups
like the center and derived subgroup.

The second class of groups which are handled dynamically are abelian groups. These can
be accessed by the special url of the form https://www.lmfdb.org/Groups/Abstract/ab/
label where label gives the orders of the cyclic factors of the group, separated by dots, and
where one can optionally specify multiplicities using underscores. So, the group C3

12 × C6

can be given by label 12_3.6 or 12.12.12.6 or 12.6.12.12. Exceptionally large groups can
be input using such a label since computations for them are straightforward starting from a
decomposition as a product of cyclic groups. As with the first type, the pages for abelian
groups give more limited information than those groups pulled directly from the database.

3.5. Statistics. Since the data is stored in a database structure, we are able to calculate
many statistics for different order types: whether the order of a group is a prime, a product
of two distinct primes, a power of one prime times another prime, etc. We collect statistics
of broad interest here: https://www.lmfdb.org/Groups/Abstract/stats. For orders of
groups in our database, we list distributions of different solvability types as a function of
order. As two examples, we give the percentage of groups of various order types which are
abelian and metacyclic but not cyclic, or supersolvable but not nilpotent nor metabelian. We
also list distributions of nilpotency class and rank as a function of order, and for nonabelian
groups we give distributions of automorphism group and outer automorphism group orders
as a function of order. In all cases we give a numerical value as well as a percentage, and the
counts shown in the statistics tables link to searches for groups of the corresponding type.

10

https://www.lmfdb.org/Groups/Abstract/256.501
https://www.lmfdb.org/Groups/Abstract/?subgroup=128.160&normal=yes&direct=no&split=yes"ient=2.1&search_type=Subgroups
https://www.lmfdb.org/Groups/Abstract/512.402873
https://beta.lmfdb.org/Groups/Abstract/512.402873
https://www.lmfdb.org/Groups/Abstract/ab/label
https://www.lmfdb.org/Groups/Abstract/ab/label
https://www.lmfdb.org/Groups/Abstract/ab/12_3.6
https://www.lmfdb.org/Groups/Abstract/stats

4. Computing presentations for solvable groups

Every finite solvable group is polycyclic [HEO05, §8.1], and the polycyclic presentations
in Magma use one generator for each prime dividing the order of the group (counted with
multiplicity). So, for example, the cyclic group of order 22 · 3 · 5 would have a presentation
with 4 generators instead of the simpler one using a single generator. Here we describe a
process for finding a more human-readable polycyclic presentation for a solvable group by
using chains of subgroups. One can pass between polycyclic presentations and subnormal
filtrations with cyclic quotients:

(1) given a polycyclic presentation with generators {g1, . . . , gm} then

1 ≤ H1 ≤ · · · ≤ Hm = G

will be a filtration of G with cyclic quotients, where Hi = 〈g1, . . . , gi〉;
(2) given a filtration of the form above, any choice of elements gi generating Hi/Hi−1 will

give generators for a polycyclic presentation.

Define the relative order of gi to be the order of the quotient Hi/Hi−1. We approach the
search for a presentation by first finding a filtration and then arbitrarily choosing generators.

We first construct all minimal length chains of subgroups, each normal in the next, with
cyclic relative quotients. We do this via a “top-down" approach, building them down from the
top in layers until reaching the trivial subgroup. This process guarantees a presentation with
a minimal number of generators; we then compare all such minimal presentations according
to the following criteria.

(1) Maximize the number of generators with order equal to their relative order.
(2) Maximize the number of generators that commute with each other.
(3) Aim for relative orders that are non-increasing.
(4) Conjugacy relations should be “deeper” (within smaller groups in the filtration).

This process cannot feasibly be made canonical: at some points we make arbitrary choices,
both for the filtration and for the choice of generators.

There are some groups for which the process of constructing and comparing all minimal
length chains is too time-consuming. In these cases we instead use two other algorithms,
both of which run much faster, but may not give as good a presentation. The first proceeds
by greedily building the chains by starting with H = G and iteratively choosing a random
normal subgroup K < H with H/K cyclic. The second algorithm simply refines the derived
series by taking an abelian basis at each step in order to fill in the series to one with cyclic
quotients.

It is important to pick the presentation at the beginning of our computations for each
solvable group, as this presentation impacts certain attributes of the group, such as how we
represent elements of the group.

11

5. Labels

A foundational principle of the LMFDB is to display everything with a unique label, an
identifier that carries mathematically relevant information which can ideally be computed
in a deterministic way. One advantage of having labels for a type of object is that one can
definitively order them. Conversely, a sequential ordering of all objects of a type trivially
allows one to label them, if by nothing else, by their position in the sequence. We will talk
of having labels and an ordering interchangeably. When sorting ordered tuples, we always
mean lexicographically, and treat complex numbers as ordered pairs of real numbers for this
purpose.

For small groups, we label them as N.i corresponding to the GAP ID encoded as a string,
where N is the order of the group and i distinguishes groups of the same order (as determined
in GAP). If a group is not in GAP Small Groups database, we replace i with an incrementing
letter code, assigning labels to groups as they are added to our database.

The existence of automorphisms precludes having a definitive labeling de novo. Conse-
quently, the labels for conjugacy classes, characters, and subgroups depend on fixing an
ordered list of generators, which we do, and a specific realization of the group, i.e., as a
permutation group, a polycyclic group, or as a matrix group. The latter is important since in
each case, one can easily construct an injective set map from the group to Z, which in turn
orders elements of the group. We then need to have a reproducible method for generating
elements of a group. In the applications below, we found that picking pseudo-random group
elements worked efficiently. We first describe the pseudo-random number generator we use.

5.1. A deterministic sequence of pseudo-random group elements. We use an expo-
nential pseudo-random number generator given by aj = a0 b

j mod p where

a0 = 123

b = 25096281518912105342191851917838718629

p = 340282366920938463463374607431768211297.

Here p is the largest prime less than 2128.
To produce a pseudo-random sequence of group elements we follow a standard method.

Starting with k generators, g1, . . . , gk we initialize the process by forming the (k + 5)-tuple v
with vi = gi (taking subscripts modulo k). We then have 20 rounds of picking distinct indices
i and j and replace vi with vi · vj. After this initialization step, we generate the sequence
by again picking random subscripts i and j according to our pseudo-random sequence of
integers, replacing vi with vi · vj and returning the new vi.

5.2. Conjugacy classes and divisions. If G is a group and g1, g2 ∈ G, we say that g1 and
g2 are in the same division if there exists h ∈ G such that h−1g1h = gi2 for some i ∈ Z such

12

that gcd(i, |g1|) = 1. Divisions are unions of conjugacy classes, and rational-valued characters
are constant on divisions. (In fact, the irreducible rational-valued characters form a basis
for the space of functions that are constant on divisions, as complex characters do for class
functions.) We say that a division is maximal if a representative generates a maximal cyclic
subgroup of G.

Divisions are labeled with nA where n is a positive integer giving the order of a representative
element and A is a capital letter which functions as a counter. They are ordered first by the
size of a conjugacy class within the division, and then by the number of conjugacy classes
within a division. Remaining ties are broken based on which division is seen first using a
combination of the following two strategies.

The maximal divisions are partitioned into small and large divisions. For large divisions,
we produce a pseudo-random sequence of group elements gj and order those divisions based
on the smallest j such that gj is an element of the division. The conjugacy class of gj also
gives a first conjugacy class within the division, which is used below. A problem with using
this method generally is that some groups contain maximal divisions which are still very
small in comparison to the size of the group, so it may take a prohibitive amount of time to
hit all of the divisions.

For small divisions, the basic approach is to enumerate elements and pick the smallest
according to the total order on the elements of the group. If the division is small enough, we
can do precisely this, but for medium-sized divisions we first attempt to narrow the number
of elements considered by intersecting with non-normal subgroups of G. In order to make this
process canonical, we use a modification of the big division process to choose a subgroup to
intersect with. Note that Magma can quickly compute the maximal subgroups of the group G.
Using the pseudo-random sequence of group elements, we record whether or not the elements
are in each maximal subgroup as a vector of 0’s and 1’s (1 for when the element is in the
subgroup). We generate enough elements so that the maximal subgroups are distinguished,
sorting the maximal subgroups by these vectors, largest first. Then looking recursively at
maximal subgroups of maximal subgroups, we can build part of the subgroup lattice of G
from the top down, always having an ordering for the newly constructed subgroups. In this
process, we ignore subgroups where the relative index is greater than 1000 as that would slow
the computation. Paths down this lattice are then also ordered.

For small divisions, we intersect successively with maximal subgroups until the number of
elements is relatively small (but positive). We can then enumerate elements and find the
first one, based on the conversion of group elements to positive integers mentioned above.
This both orders the divisions and picks a first conjugacy class within the division. Note
that it is possible to track the number of elements in these intersections by using appropriate
centralizers, so no enumeration is required until the number of elements drops below a
threshold.

13

To distinguish large from small divisions, consider a division consisting of n conjugacy
classes, each of sizem with elements of order r. The division is considered large if n ≥ |G|/2000

and either n ≥ 20000 or n2 ≥ |G|. For divisions that don’t meet these criteria, we compute
the intersections down chains of maximal subgroups, greedily minimizing the intersection.
If we are able to decrease the size of the intersection below a threshold we consider the
division small; if the process terminates in a step where the remaining elements do not
intersect nontrivially with any of the next steps in the subgroup tree, and we’re still above
the threshold, we also consider the original division large.

Once labels for maximal divisions are computed, we can compute labels and first elements
for other classes. Working through the maximal divisions in order, we pick an element from
its first conjugacy class g and compute in sequence the classes of elements gi with 0 < i < |g|
and gcd(i, |g|) > 1. The order of the non-maximal divisions is simply the order in which they
appear from this sequence (looping over divisions, and within that, powers of an element).

The label for a conjugacy class starts with the label of its division. If there is only one
class within the division, the two labels are the same. When there is more than one class
in a division nA, the conjugacy classes are labeled nAj where j is an integer. The first class
encountered will then be nA1. Let g be an element representing this class. We then consider
the conjugacy classes [g−1], [g2], [g−2], . . . These correspond to conjugacy class labels nA-1,
nA2, nA-2, The label for the class is the first time it appears in this sequence. We note
that conjugacy classes which land in the same division have the same prefix, and will be
grouped together in the complex character table for the group.

5.3. Characters. When feasible, we give information on irreducible rational-valued and
complex-valued characters. The group Gal(Q/Q) acts on the complex characters. The Galois
orbits correspond to the rational characters, with each rational character being simply the
sum of the complex characters in an orbit. We note that a rational-valued character may not
arise from a rational-valued representation. The Schur index gives the smallest multiplier for a
rational character so that the resulting character arises from a rational-valued representation.

Permutation representations of a group G can be realized using permutation matrices,
and are thus sums of irreducible representations. Transitive permutation representations are
classified by their degree n and T -number t [CHM98]. For a given irreducible representation,
we can consider the “first” transitive permutation containing it to be the smallest pair (n, t).

The labels for rational characters are of the form G.na where G is the label for the
group, n is the degree, and a is a lower-case letter which acts as a counter. The label for
a complex character takes the form G.nak where G.na is the label for the corresponding
rational character and k is positive integer which serves as a counter. In the character tables,
characters are sorted by their labels viewed as a tuple (n, a) or (n, a, k), respectively. To

14

completely determine the labels, we just need to know the ordering among characters with
the same degree.

For rational characters, we sort by (d,m, n, t) where d is the degree (which is explicitly
given in the label), m is the size of the Galois orbit of complex characters giving rise to it,
and n and t refer to the smallest containing permutation representation. Any remaining
ties are broken by sorting on the vector of character values using our ordering of conjugacy
classes.

Complex irreducible characters are given in the same order as their corresponding rational
characters, with characters within a Galois orbit ordered by their vectors of values.

5.4. Subgroups. Most1 labels for subgroups H ≤ G take the form n.i.m.a.c. The piece
n.i is the label of the ambient group G, m is the index of H in G, and a and c distinguish H
up to automorphism and conjugacy, respectively. For some ambient groups we only compute
and display subgroups up to automorphism, in which case the label takes the reduced form
n.i.m.a. To determine a and c we use the idea of Gassmann equivalence classes to further
order subgroups of the same index. (For more on Gassmann equivalence and related notions,
see [Sut21].)

Definition 5.1. Two subgroups H1 and H2 of G are Gassmann equivalent if they intersect
each G-conjugacy class with the same cardinality. Equivalently, H1 and H2 have the same
index m and the permutation representations πH1 : G → Sm and πH2 : G → Sm have the
same character (which counts the number of cosets fixed by each conjugacy class).

In order to label Gassmann classes we first fix an ordering of the conjugacy classes of G as
in Section 5.2. Having fixed such an ordering, it is easy to compute a unique identifier for each
Gassmann class: we count the intersection of H with each G-conjugacy class. We enumerate
H-conjugacy classes of elements of H in any order, then determine which G-conjugacy class
they belong to, adding the size of the H-conjugacy class to a running tally of the intersection.
An analogous process works for Gassman vectors up to automorphism, where we collect
together G-conjugacy classes that are related by an automorphism of G.

If there are multiple subgroups up to automorphism (resp., conjugation) within a given
Gassmann class, we use the subgroup lattice to further order those remaining subgroups. We
first order subgroups H in the same Gassmann class using the lex ordering on sorted list of
labels of all (proper) supergroups of H (one can and often does have Gassmann equivalent
subgroups for which the lists of supergroups differ). Note that here “supergroup” refers
to inclusions in the poset of subgroups up to automorphism (resp., conjugation), meaning
we consider K to be a supergroup of H if it contains any subgroup equivalent to H up to
automorphism (resp., conjugation).

1The exceptions are detailed at the end of this section.
15

In these cases where two or more Gassmann equivalent subgroups have the same set of
supergroups, we resort to computing permutation representation signatures. We can, in fact,
compute with any supergroup K of H instead of G. This is much more efficient when the
index [K : H] is much smaller than [G : H], but does require some care to account for the fact
that there may be two or more G-conjugates of H contained in K that are not K-conjugate.

Once we have an ordering inside the Gassmann classes, we assign a letter label to the
Gassmann class and concatenate a number from the ordering of subgroups inside the Gassmann
class to create an alpha-numeric value which we assign to a and (whenever we can compute
up to conjugation) we similarly assign an alpha-numeric value to c. In order to keep labels
small, we assume that we compute all the Gassmann classes for a given index so that we can
assign ordinals to them.

In some cases, we are unable to compute the whole subgroup lattice, or there are enough
subgroups that we do not want to store all of them. When possible, we compute subgroups
up to a certain index bound, and the labeling scheme described above still works in that
setting. But there are often some subgroups above the index bound that we want to keep,
which fall into certain categories.

(1) Since Sylow subgroups are the unique subgroup of their order up to conjugacy, we
can compute their labels a priori.

(2) We aim to compute the lattice of normal subgroups even when we cannot find all
subgroups. In this case, we can use the same scheme described above applied to the
lattice or normal subgroups to obtain a label with the letter .N appended; such labels
are used for non-Sylow normal subgroups above the index bound.

(3) We store complements of normal subgroups even above the index bound so that
we can describe groups as semidirect products. Given a normal subgroup with
label n.i.m.a.c.N, we label its complements n.i.m.a.c.N1, n.i.m.a.c.N2,
Unfortunately, these labels are not canonical since they depend on the order that
complements are produced. Also note that a subgroup can appear as a complement
of multiple normal subgroups; in this case we just label it based on the first normal
subgroup where it arises.

(4) For non-Sylow, non-normal maximal subgroups above the index bound, we apply the
original labeling scheme restricted to maximal subgroups, and append the letter .M.

(5) We also keep core-free subgroups above the index bound rather than discarding them,
since these yield transitive permutation representations. The labels here are just
n.i.m.CFk, where k is a counter arbitrarily running over the core-free subgroups of a
given index.

16

6. Connections and examples

We anticipate that the group home pages will be a valuable tool for everyone from
undergraduate students first learning abstract algebra to experts in the field. The layout of
each page, the search features, and the knowls (the myriad of hyperlinks giving definitions
of most of the words on each page) allow for exploration of many group theoretic concepts.
Students can easily find examples of groups with common features like simple or solvable
groups; they can explore Sylow subgroups (and more generally subgroup lattices); and they
can learn about advanced topics such as series or character theory. Students can also explore
relationships between different attributes of groups. A quick search demonstrates examples
of nontrivial groups that are perfect but not simple or A-groups (a group with all its Sylow
subgroups abelian) that are not solvable.

For researchers, the groups database is intimately connected with many other mathematical
objects in the LMFDB. We highlight some of those connections below.

6.1. Connections with other objects. One of the integral parts of the LMFDB is demon-
strating links between different mathematical objects. The LMFDB universe gives the big
picture of various connections, which fall under the Langlands program. Moreover, there are
many related objects and links between them are displayed in the database as well. In this
section we list other pages in the LMFDB which are linked with Abstract Groups page. We
describe the various connections to other LMFDB pages with the group page in Figure 3.

In Figure 3, the boxes representing LMFDB sections Belyi maps, Hypergeometric motives
over Q, Lattices, and Modular curves are only available on the beta version of the LMFDB
(https://beta.lmfdb.org/). Artin representations connect to Abstract groups via both
their image and their projective images. One can also get from Artin representations to
Galois groups (i.e., transitive permutation groups) by taking a stem field for the field cut out
by the image of the representation to get a number field, and then taking the Galois group of
its Galois closure. For a number field, one has the Artin representations of the Galois group
of the normal closure of the field.

Example 6.1. Many objects in the LMFDB link to groups. Having a built-in group
database makes it easy for the user to find more information about the groups in question.
Some groups may be familiar to the user, such as those which arise as automorphism
groups of genus 2 curves; others are more complicated. Consider the Artin representation
https://www.lmfdb.org/ArtinRepresentation/4.5744.8t39.d.a which has the smallest
conductor of all 4-dimensional irreducible Artin representations with group https://www.
lmfdb.org/Groups/Abstract/192.1493 [JR17]. This group is displayed as C3

2 : S4, but
since the semidirect product notation may not uniquely identify a group, the connection to
a specific group page lets the user obtain lots of information about this group. Similarly,

17

https://www.lmfdb.org/universe
https://beta.lmfdb.org/
https://www.lmfdb.org/ArtinRepresentation/4.5744.8t39.d.a
https://www.lmfdb.org/Groups/Abstract/192.1493
https://www.lmfdb.org/Groups/Abstract/192.1493

Galois groups
(Transitive groups)

Abstract groups

Number fieldsp-adic fields
Genus 2 curves

over Q

Belyi
maps

Classical modular
forms of weight 1

Artin reps

Higher genus
curves

Elliptic curves
over Q or Q(α)

Hypergeometric
motives over Q

Sato-Tate groups Lattices
Modular
curves

component
groups

monodromy
mod `

auto.
groups

subgroups of
GL2(Z/NZ)

auto.
groups

torsion
groups

auto.
groups

monodromy
groups

Galois
groups

inertia
groups

projective image

image

Galois
groups

monodromy
groups

auto.
groups

Figure 3. Diagram illustrating the connections between abstract group pages
and other collections of objects in the LMFDB. Nodes in solid (green) and
dotted (grey) rectangles are on the production and beta version of the LMFDB,
respectively.

the projective image of this group is C2
2 : S4, to which the user is referred to the page

https://www.lmfdb.org/Groups/Abstract/96.227 for more details.

6.2. Applications via Galois theory. Perhaps the most celebrated application of groups
is their usage in studying field extensions as a part of Galois theory. Below we give examples

18

https://www.lmfdb.org/GaloisGroup/
https://www.lmfdb.org/Groups/Abstract/
https://www.lmfdb.org/NumberField/
https://www.lmfdb.org/padicField/
https://www.lmfdb.org/Genus2Curve/Q/
https://beta.lmfdb.org/Genus2Curve/Q/
https://beta.lmfdb.org/Belyi/
https://beta.lmfdb.org/Belyi/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/
https://www.lmfdb.org/ArtinRepresentation/
https://www.lmfdb.org/HigherGenus/C/Aut/
https://www.lmfdb.org/HigherGenus/C/Aut/
https://www.lmfdb.org/EllipticCurve/Q/
https://www.lmfdb.org/EllipticCurve/Q/
https://www.lmfdb.org/EllipticCurve/
https://beta.lmfdb.org/Motive/Hypergeometric/Q/
https://beta.lmfdb.org/Motive/Hypergeometric/Q/
https://www.lmfdb.org/SatoTateGroup/
https://beta.lmfdb.org/Lattice/
https://alpha.lmfdb.org/ModularCurve/Q/
https://alpha.lmfdb.org/ModularCurve/Q/
https://www.lmfdb.org/Groups/Abstract/96.227

of how our database of finite groups, together with the Galois correspondence, can be used
to study objects in other collections in the LMFDB.

Example 6.2. Let F = Q(α) be the number field with LMFDB label 5.1.35152.1, where α
has minimal polynomial f := x5−x4 +2x3−4x2 +x−1. Then F has Galois closure L = Q(β)

with LMFDB label 20.0.3354518684571451850752.1, where β has minimal polynomial

x20 − 2x19 + 10x17 − 15x16 + 40x14 − 64x13 + 46x12 + 8x11 − 32x10 + 8x9

+ 46x8 − 64x7 + 40x6 − 15x4 + 10x3 − 2x+ 1 ,

and G := Gal(L/Q) ∼= F5, the Frobenius group of order 20 (with LMFDB label 20.3.)
Examining the lattice of subgroups up to conjugacy given on the 20.3 homepage, we see that
the extension F5 is solvable, so the roots of f can be expressed by radicals. Computing fixed
fields, we obtain the subfield lattice shown in Figure 4, where K and E are the number fields

L

K

E F

Q(
√

13)

Q

5

2

2

5

2

2

5

1

C2

C5 C4

D5

F5

5

2

2

5

2

2

5

Figure 4. The subfield lattice of the number field with LMFDB label
20.0.3354518684571451850752.1 and the subgroup lattice of its Galois
group F5.

given by
x10 − x9 − 3x8 + 5x6 + x5 − 5x4 + 3x2 − x− 1

and
x4 + x3 + 2x2 − 4x+ 3 ,

respectively. We observe that the commutator subgroup of G is C5, the subgroup correspond-
ing to E. Thus E is the largest abelian subfield of L, with Galois group Gal(E/Q) ∼= Gab ∼= C4.

Example 6.3. Let K = Q2(α) be the p-adic field with LMFDB label 2.4.6.7, where α has
minimal polynomial f := x4 + 2x3 + 2x2 + 2. Note that K is not Galois over Q2 and K has

19

https://www.lmfdb.org/NumberField/5.1.35152.1
https://www.lmfdb.org/NumberField/20.0.3354518684571451850752.1
https://www.lmfdb.org/Groups/Abstract/20.3
https://www.lmfdb.org/NumberField/20.0.3354518684571451850752.1
https://www.lmfdb.org/padicField/2.4.6.7

Galois closure Kgal = Q2(β) with LMFDB label 2.12.18.59, where β has minimal polynomial

x12 − 2x11 + 6x10 + 4x9 + 6x8 + 12x7 − 4x6 − 8x3 + 16x2 − 8

and G := Gal(Kgal/Q2) ∼= A4, the alternating group of order 12 (with LMFDB label 12.3).
The inertia group I := I(Kgal/Q2) of Kgal is the abelian group C2

2 of order (with LMFDB
label 4.2). The wild inertia group of Kgal (i.e., the unique 2-Sylow subgroup of I) in this
case is equal to I.

Examining the lattice of subgroups up to conjugacy given on the 12.3 homepage, we obtain
the subfield lattice of Kgal/Q2, shown in Figure 5. It is clear from the subgroup lattice of 12.3
that Gal(Kgal/K) = C3 and the extension K/Q2 is primitive. Also note that A4 is solvable of
length 2, so we find two intermediate fields E and F of Kgal such that Gal(Kgal/E) = C2

2 and
Gal(Kgal/F) = C2. Computing fixed fields, we obtain the subfield lattice shown in Figure 5,
where E and F are the p-adic fields given by x3 − x+ 1 and x6 + x2 − 1, respectively. The
LMFDB labels for E and F are 2.3.0.1 and 2.6.6.1, respectively. We observe that the
commutator subgroup of G is C2

2 , the subgroup corresponding to E. Thus E is the largest
abelian subfield of Kgal, with Galois group Gal(E/Q) ∼= Gab ∼= C3.

This is an interesting example since K is the only degree 4 extension of Qp, for any p,
which has Galois group Gal(Kgal/Q2) ∼= A4.

Kgal

F

K E

Q2

3

2

2

3

4

1

C2

C3 C2
2

A4

3

2

2

3

4

Figure 5. The subfield lattice of the Galois closure of the p-adic field with
LMFDB label 2.4.6.7 and the subgroup lattice of its Galois group A4.

Example 6.4. Let G be the Sato-Tate group J(O) with LMFDB label 1.4.F.48.48a. Let
G0 be the connected component of the identity and G/G0 be the component group of G.
As noted on its homepage, J(O) has the largest component group (C2 × S4, LMFDB label
48.48, with order 48) among Sato-Tate groups of abelian surfaces over number fields.

Let A be an abelian variety of dimension g ≤ 3 defined over a number field k. Let K be
the minimal extension of k over which all endomorphisms of A are defined, i.e., such that
End(AK) = End(Ak). By [FKRS12, Proposition 2.17], then STA / ST0

A
∼= Gal(K/k), where

STA is the Sato-Tate group of A.
20

https://www.lmfdb.org/padicField/2.12.18.59
https://www.lmfdb.org/Groups/Abstract/12.3
https://www.lmfdb.org/Groups/Abstract/4.2
https://www.lmfdb.org/Groups/Abstract/12.3
https://www.lmfdb.org/Groups/Abstract/12.3
https://www.lmfdb.org/padicField/2.3.0.1
https://www.lmfdb.org/padicField/2.6.6.1
https://www.lmfdb.org/padicField/2.4.6.7
https://www.lmfdb.org/SatoTateGroup/1.4.F.48.48a
https://www.lmfdb.org/Groups/Abstract/48.48

Let C : y2 = x6 − 5x4 + 10x3 − 5x2 + 2x− 1 considered over Q, and let A = Jac(C). As
shown in [FKRS12], the variety A has Sato-Tate group J(O), realizing this group over Q, and
the endomorphisms of A are defined over the number field K = Q(

√
−2,
√
−11, a, b) where

a3 − 7a+ 7 = 0 and b4 + 4b2 + 8b+ 8 = 0 .

Applying the above proposition to this example, we have

C2 × S4
∼= G/G0 ∼= Gal(K/k) .

However, as shown in [FKRS12, Table 4], the curve C can also be used to realize 24 other
Sato-Tate groups by varying the base field. In other words, by taking a number field L with
k ⊆ L ⊆ K and considering the base change AL, we can obtain other Sato-Tate groups. For
instance, examining [FKRS12, Table 8] we see that J(T) (LMFDB label 1.4.F.24.13a) is
the unique Sato-Tate group occurring in genus 2 with component group C2×A4. Computing
the fixed field L of C2 × A4 ≤ C2 × S4, we find that L = Q(

√
−11). Thus the base change

AL has Sato-Tate group J(T), realizing another of the 52 possible Sato-Tate groups.
With further calculation, one can use other base changes of A to realize other Sato-Tate

groups whose component groups are subgroups of C2 × S4 by considering the lattice of
subgroups given on the homepage for C2 × S4 and computing fixed fields.

Galois theory can also be applied in a geometric context. The equivalence of categories
between function field extensions in one variable and nonsingular projective curves (see
[Sta18, Tag 0BXX], for instance) allows us to study nonconstant morphisms of curves by
examining the associated extension of function fields. We consider an example coming
from the Families of higher genus curves with automorphisms collection, available at https:
//www.lmfdb.org/HigherGenus/C/Aut/.

Example 6.5. Consider the refined passport with label 3.168-42.0.2-3-7. It corresponds
to a unique topological equivalence class of morphisms X → X/Aut(X) ∼= P1, where X is
the Klein quartic curve, a genus 3 curve with the largest possible number of automorphisms
for its genus. (Such curves are known as Hurwitz curves.) It has automorphism group
Aut(X) ∼= PSL2(F7) (which has LMFDB label 168.42), and all automorphisms are defined
over the field K = Q(ζ7). By examining the lattice of subgroups of PSL2(F7) given on its
homepage and applying the Galois correspondence, we can find all intermediate covers Y
with X → Y → X/Aut(X) ∼= P1.

Computationally, this can be accomplished using Magma’s CurveQuotient command.
Calling this on each subgroup of PSL2(F7) in turn, we find three intermediate covers Y of
genus 1, corresponding to the subgroups of PSL2(F7) isomorphic to C2, C3, and C4. (All
other quotients by nontrivial subgroups of Aut(X) result in genus 0 curves.) Each of these
curves can be equipped with the structure of an elliptic curve by taking as the origin of the
group law the image of (1 : 0 : 0) under the appropriate quotient map. With some further

21

https://www.lmfdb.org/SatoTateGroup/1.4.F.24.13a
https://stacks.math.columbia.edu/tag/0BXX
https://www.lmfdb.org/HigherGenus/C/Aut/
https://www.lmfdb.org/HigherGenus/C/Aut/
https://www.lmfdb.org/HigherGenus/C/Aut/3.168-42.0.2-3-7
https://www.lmfdb.org/Groups/Abstract/168.42

computation (see [Elk99, equation 2.10]), one can show that each of these elliptic curves is
isomorphic to the curve E : y2 = 4x3 + 21x2 + 28x over K. From this we observe that Jac(X)

decomposes as E3 up to isogeny.

6.3. Modular curves and subgroups of GL2(Z/NZ). The LMFDB currently has a pre-
liminary database of modular curves, available at https://alpha.lmfdb.org/ModularCurve/
Q/. We conclude this section by describing how properties of modular curves can be deduced
from their corresponding subgroups of GL2(Z/NZ). For a more comprehensive exposition of
modular curves and subgroups of GL2(Ẑ), see [RSZB22] or [Zyw22].

Let E be an elliptic curve over Q and E[N] be its N -torsion subgroup for each N ∈ Z≥1.
The absolute Galois group GQ := Gal(Q/Q) acts on E[N], and since E[N] ∼= (Z/NZ)2 as
abelian groups, we obtain a representation

ρE,N : GQ → Aut(E[N]) ∼= GL2(Z/NZ) .

By choosing compatible bases, we can take the inverse limit and package these together as a
single representation

ρE : GQ → lim←−
N

GL2(Z/NZ) = GL2(Ẑ) .

If E does not have complex multiplication, then Serre’s Open Image Theorem [Ser72] implies
that the image of ρE is an open subgroup of GL2(Ẑ), hence has finite index. Given an open
subgroup H of GL2(Ẑ), one can define the modular curve XH whose K-points parametrize
elliptic curves E/K such that img(ρE) ⊆ H (up to conjugation). (For a precise definition of
XH , see [RSZB22, §2.3] or [Zyw22, §3].)

For each N ∈ Z≥1, let πN : GL2(Ẑ) → GL2(Z/NZ) be the projection map. Every open
subgroup H ≤ GL2(Ẑ) contains ker(πN) for some N , and the smallest such N ∈ Z≥1 is
called the level of H. If H contains ker(πN), then H can be recovered from πN(H) as
H = π−1N (πN (H)). Thus to store H on a computer, we can simply store generators for πN (H)

where N is the level of H.
Although this is a database of modular curves, much of the geometric data is computed

group theoretically. Let H ≤ GL2(Ẑ) be an open subgroup of level N . Letting ΓH :=

±πN(H) ∩ SL2(Z/NZ), then one can determine the number of elliptic points and cusps of
XH by studying the action of the matrices(

0 1

−1 0

)
,

(
0 1

−1 −1

)
,

(
1 1

0 1

)
on the coset space ΓH\ SL2(Z/NZ). This data can in turn be used to compute the genus of
XH .

Example 6.6. Consider the modular curve X0(6) of level 6 with LMFDB label 6.12.0.a.1.
As a containment H ⊆ H ′ of open subgroups of GL2(Ẑ) induces a morphism XH → XH′ of

22

https://alpha.lmfdb.org/ModularCurve/Q/
https://alpha.lmfdb.org/ModularCurve/Q/
https://alpha.lmfdb.org/ModularCurve/Q/6.12.0.a.1/

modular curves, we have morphisms X0(6)→ X0(2) and X0(6)→ X0(3). On the homepage
for X0(6), it is further claimed that X0(6) is the fiber product of X0(2) and X0(3) over
X(1)—we explain how this can be determined group theoretically.

Let H2, H3, H6 be the subgroups of GL2(Z/2Z), GL2(Z/3Z), GL2(Z/6Z) corresponding
to X0(2) (with label 2.3.0.a.1), X0(3) (with label 3.4.0.a.1), and X0(6), respectively.
Note that GL2(Z/6Z) has label 288.851 and the subgroup H6

∼= C2
2 × S3 has subgroup

label 288.851.12.c1.a1. Taking the inverse image of H2 and H3 under the projection maps
π6,2 : GL2(Z/6Z) → GL2(Z/2Z), π6,3 : GL2(Z/6Z) → GL2(Z/3Z), we obtain subgroups
H̃2 := π−16,2(H2) with subgroup label 288.851.3.a1.a1 and H̃3 := π−16,3(H3) with subgroup
label 288.851.4.b1.a1.

Either by examining the (very large) subgroup lattice diagram of GL2(Z/6Z) or by com-
puting directly, we find that H̃2 ∩ H̃3 = H6 and 〈H̃2, H̃3〉 = GL2(Z/6Z). This shows that H6

is the fiber product of H̃2 and H̃3 over GL2(Z/6Z), and hence X0(6) is the fiber product of
X0(2) and X0(3) over X(1), as depicted in Figure 6.

X0(6) X0(2)

X0(3) X(1)

_
H6 H̃2

H̃3 GL2(Z/6Z)

_

Figure 6. The fiber product diagram for the modular curve X0(6), and the
fiber product diagram of the corresponding subgroups of GL2(Z/6Z).

References

[BCH+] Greg Butler, John Cannon, Derek Holt, Alexander Hulpke, John McKay, and Gordon Royle.
Database of transitive groups. https://magma.maths.usyd.edu.au/magma/handbook/text/781.
2

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory
(London, 1993). 2, 4

[BE99a] Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J. Symbolic Comput., 27(4):387–
404, 1999. 5

[BE99b] Hans Ulrich Besche and Bettina Eick. The groups of order at most 1000 except 512 and 768. J.
Symbolic Comput., 27(4):405–413, 1999. 5

[BE01] Hans Ulrich Besche and Bettina Eick. The groups of order qn · p. Comm. Algebra, 29(4):1759–1772,
2001. 5

[BEO01] Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien. The groups of order at most 2000. Electron.
Res. Announc. Amer. Math. Soc., 7:1–4, 2001. 5

[BEO02] Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien. A millennium project: constructing small
groups. Internat. J. Algebra Comput., 12(5):623–644, 2002. 2

23

https://alpha.lmfdb.org/ModularCurve/Q/2.3.0.a.1/
https://alpha.lmfdb.org/ModularCurve/Q/3.4.0.a.1/
https://alpha.lmfdb.org/Groups/Abstract/288.851
https://alpha.lmfdb.org/Groups/Abstract/sub/288.851.12.c1.a1
https://alpha.lmfdb.org/Groups/Abstract/sub/288.851.3.a1.a1
https://alpha.lmfdb.org/Groups/Abstract/sub/288.851.4.b1.a1
https://alpha.lmfdb.org/Groups/Abstract/diagram/288.851
https://magma.maths.usyd.edu.au/magma/handbook/text/781

[Bre00] Thomas Breuer. Characters and automorphism groups of compact Riemann surfaces, volume 280
of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
2000. 5

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. ATLAS of finite groups.
Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple
groups, With computational assistance from J. G. Thackray. 2

[CH08] John J. Cannon and Derek F. Holt. The transitive permutation groups of degree 32. Experiment.
Math., 17(3):307–314, 2008. 5

[CHM98] John H. Conway, Alexander Hulpke, and John McKay. On transitive permutation groups. LMS J.
Comput. Math., 1:1–8 (electronic), 1998. 14

[Con10] Marston Conder. Group actions on surfaces. https://www.math.auckland.ac.nz/~conder/
BigSurfaceActions-Genus2to101-ByGenus.txt, 2010. 5

[DE05] Heiko Dietrich and Bettina Eick. On the groups of cube-free order. J. Algebra, 292(1):122–137,
2005. 5

[DE12] Heiko Dietrich and Bettina Eick. Addendum to “On the groups of cube-free order” [J. Algebra 292
(1) (2005) 122–137] [mr2166799]. J. Algebra, 367:247–248, 2012. 5

[DEP22] Heiko Dietrich, Bettina Eick, and Xueyu Pan. Groups whose orders factorise into at most four
primes. J. Symbolic Comput., 108:23–40, 2022. 5

[Dok] Tim Dokchitser. GroupNames. http://groupnames.org. 2
[Elk99] Noam D. Elkies. The Klein quartic in number theory. In The eightfold way, volume 35 of Math.

Sci. Res. Inst. Publ., pages 51–101. Cambridge Univ. Press, Cambridge, 1999. 21
[FKRS12] Francesc FitÃľ, Kiran S. Kedlaya, VÃŋctor Rotger, and Andrew V. Sutherland. SatoâĂŞ-

Tate distributions and Galois endomorphism modules in genus 2. Compositio Mathematica,
148(5):1390âĂŞ1442, 2012. 20, 21

[GAP21] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021. 2
[HEO05] Derek F. Holt, Bettina Eick, and E. A. O’Brien. Handbook of Computational Group Theory.

Discrete Mathematics and Its Applications. CRC Press, 2005. 10
[HR20] Derek Holt and Gordon Royle. A census of small transitive groups and vertex-transitive graphs. J.

Symbolic Comput., 101:51–60, 2020. 5
[HRT01] R. B. Howlett, L. J. Rylands, and D. E. Taylor. Matrix generators for exceptional groups of Lie

type. J. Symbolic Comput., 31(4):429–445, 2001. 5
[Hul] Alexander Hulpke. Transitive groups library - a GAP package, version 3.0. https://www.

gap-system.org/Packages/transgrp.html. 2
[Hul05] Alexander Hulpke. Constructing transitive permutation groups. J. Symbolic Comput., 39(1):1–30,

2005. 5
[JR17] John W. Jones and David P. Roberts. Artin L-functions of small conductor. Res. Number Theory,

3:Paper No. 16, 33, 2017. 17
[NOVL04] M. F. Newman, E. A. O’Brien, and M. R. Vaughan-Lee. Groups and nilpotent Lie rings whose

order is the sixth power of a prime. J. Algebra, 278(1):383–401, 2004. 5
[O’B90] E. A. O’Brien. The p-group generation algorithm. volume 9, pages 677–698. 1990. Computational

group theory, Part 1. 5
[O’B91] E. A. O’Brien. The groups of order 256. J. Algebra, 143(1):219–235, 1991. 5
[OPS08] J. Opgenorth, W. Plesken, and T. Schulz. Carat, crystallographic algorithms and tables, Version

2.1b1. https://github.com/lbfm-rwth/carat/, Jul 2008. 5

24

https://www.math.auckland.ac.nz/~conder/BigSurfaceActions-Genus2to101-ByGenus.txt
https://www.math.auckland.ac.nz/~conder/BigSurfaceActions-Genus2to101-ByGenus.txt
http://groupnames.org
https://www.gap-system.org/Packages/transgrp.html
https://www.gap-system.org/Packages/transgrp.html
https://github.com/lbfm-rwth/carat/

[OVL05] E. A. O’Brien and M. R. Vaughan-Lee. The groups with order p7 for odd prime p. J. Algebra,
292(1):243–258, 2005. 5

[Roe] David Roe. A fast nonisomorphism test for finite groups. In preparation. 6
[RSZB22] Jeremy Rouse, Andrew V. Sutherland, and David Zureick-Brown. `-adic images of Galois for

elliptic curves over Q (and an appendix with John Voight). Forum Math. Sigma, 10:Paper No.
e62, 63, 2022. With an appendix with John Voight. 21, 22

[RT98] L. J. Rylands and D. E. Taylor. Matrix generators for the orthogonal groups. J. Symbolic Comput.,
25(3):351–360, 1998. 5

[Ser72] Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent.
Math., 15(4):259–331, 1972. 22

[Sta18] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018. 21
[Sut21] Andrew V. Sutherland. Stronger arithmetic equivalence. Discrete Anal., pages Paper No. 23, 23,

2021. 15
[Tan11] O. Tange. GNU parallel - the command-line power tool. ;login: The USENIX Magazine, 36(1):42–

47, Feb 2011. 4
[Tay87] Don Taylor. Pairs of generators for matrix groups. I. Cayley Bulletin 3, 1987. 5
[VRD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,

CA, 2009. 4
[WWT+] Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton,

Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott. Atlas of finite group representations
- version 3. http://brauer.maths.qmul.ac.uk/Atlas/v3/. 2, 5

[Zyw22] David Zywina. Explicit open images for elliptic curves over Q. https://arxiv.org/abs/2206.
14959, 2022. 21, 22

Lewis Combes, School of Mathematics and Statistics, University of Sheffield, UK, S3 7RH
E-mail address: lmcombes1@sheffield.ac.uk

John Jones, Department of Mathematics and Statistical Sciences, P.O. Box 871804, Arizona
State University, Tempe, AZ, 85287

E-mail address: jj@asu.edu

Jennifer Paulhus, Department of Mathematics and Statistics, Grinnell College, Grinnell,
IA, 50112

E-mail address: paulhus@math.grinnell.edu

David Roe, Massachusetts Institute of Technology, Department of Mathematics, 77
Massachusetts Ave., Bldg. 2-336 Cambridge, MA 02139, United States of America

E-mail address: roed@mit.edu

Manami Roy, Department of Mathematics, Fordham University, Bronx, New York, USA
E-mail address: mroy17@fordham.edu

Sam Schiavone, Massachusetts Institute of Technology, Department of Mathematics, 77
Massachusetts Ave., Bldg. 2-336 Cambridge, MA 02139, United States of America

E-mail address: sam.schiavone@gmail.com

25

https://stacks.math.columbia.edu
http://brauer.maths.qmul.ac.uk/Atlas/v3/
https://arxiv.org/abs/2206.14959
https://arxiv.org/abs/2206.14959
lmcombes1@sheffield.ac.uk
jj@asu.edu
paulhus@math.grinnell.edu
roed@mit.edu
mroy17@fordham.edu
sam.schiavone@gmail.com

	1. Introduction
	1.1. Features of the database
	1.2. Structure of the paper
	1.3. Acknowledgments

	2. Data overview
	2.1. Data computed for each group
	2.2. The isomorphism problem

	3. Features of the database
	3.1. Features of the search interface
	3.2. Features of a group page
	3.3. Subgroups
	3.4. Dynamic constructions
	3.5. Statistics

	4. Computing presentations for solvable groups
	5. Labels
	5.1. A deterministic sequence of pseudo-random group elements
	5.2. Conjugacy classes and divisions
	5.3. Characters
	5.4. Subgroups

	6. Connections and examples
	6.1. Connections with other objects
	6.2. Applications via Galois theory
	6.3. Modular curves and subgroups of GL(2,Z/NZ)

	References

