Math 430 – Group Theory Extra Credit Project

Due April 25, 2016

If you choose to work on this project, I will e-mail you an integer \(N \). Your goal is to classify all groups of order \(N \) up to isomorphism. Your main tools will be

- Sylow’s Theorems (15.4, 15.7 and 15.8),
- Semidirect Products (see the introduction below),
- the following proposition, which you should prove.

Proposition.

1. Let \(H \) and \(K \) be subgroups of \(G \). Then \(HK \) is a subgroup of \(G \) if and only if \(HK = KH \).
2. If \(K \) is a normal subgroup of \(G \) and \(H \) is any subgroup of \(G \), then \(HK \) is a subgroup of \(G \).

The book *Abstract Algebra* by Dummit and Foote may be useful (especially chapters 4 and 5). E-mail me if you’re not able to get a copy from the library.

Hint. As a warmup, you may want to try to classify groups of order \(M \) for some divisors \(M \) of \(N \). Also, try to list as many groups of order \(N \) as you can before attempting to prove that you have a complete list.

Introduction to Semidirect Products

Given two groups \(H \) and \(K \), together with a left action of \(K \) on \(H \) (which we’ll denote by \(k \cdot h \)), one can form a new group called the *semidirect product* of \(H \) and \(K \). It will be denoted \(H \rtimes K \).

As a set, its elements are just ordered pairs \((h,k)\), like the direct product \(H \times K \). The operation is defined by

\[
(h_1,k_1) \times (h_2,k_2) = (h_1(k_1 \cdot h_2),k_1k_2).
\]

There are natural injective homomorphisms \(H \rightarrow H \rtimes K \) and \(K \rightarrow H \rtimes K \) given by \(h \mapsto (h,1) \) and \(k \mapsto (1,k) \). However, the image of \(H \) is a normal subgroup,
while the image of K is not (unless the action of K on H is trivial, in which case the semidirect product is the same as the direct product).

Just as with direct products, there is a notion of internal semidirect product. Given a pair of subgroups H and K in G with H normal, multiplication induces an isomorphism between $H \rtimes K$ (with the action defined by $k \cdot h = khk^{-1}$) and G if the following two conditions are satisfied:

1. $H \cap K = \{1\}$,
2. $G = HK$ (or that $\#G = \#H \#K$ if all are finite).

Finally, there is a relationship between semidirect products and quotient groups. Given a normal subgroup H of G, let $K_q = G/H$. Then $G \cong H \rtimes K_q$ if and only if there is a subgroup $K \subseteq G$ that is mapped isomorphically onto K_q by the natural quotient map $G \to G/H$.

Example. If $G = D_n$ and H is the subgroup of rotations, then letting K be any subgroup of order 2 generated by a reflection we get $G \cong H \rtimes K \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$.

Example. If $G = S_n$ and $H = A_n$, letting K be any subgroup of order 2 generated by a transposition we get $G \cong H \rtimes K \cong A_n \rtimes \mathbb{Z}_2$.

Example. There is no way to express Q_8 as a semidirect product of smaller groups, since every subgroup of order 4 contains the unique subgroup of order 2.

Example. The subgroup of order 12 that we didn’t define in class is a semidirect product $\mathbb{Z}_3 \rtimes \mathbb{Z}_4$. The action of \mathbb{Z}_4 on \mathbb{Z}_3 is: a acts trivially if it is even and acts by $x \mapsto -x$ if it is odd.