Math 430 - Practice Midterm Solutions

1. (a) A group is a set G with an operation • : $G \times G \rightarrow G$ so that
i. There is an identity element $1 \in G$ so that $1 \cdot g=g \cdot 1=g$ for all $g \in G$,
ii. for each $g \in G$ there is an inverse $g^{-1} \in G$ so that $g \cdot g^{-1}=g^{-1} \cdot g=1$,
iii. for all $x, y, z \in G, x \cdot(y \cdot z)=(x \cdot y) \cdot z$.
(b) The cancellation law states that if $g h=g h^{\prime}$ in a group then $h=h^{\prime}$.

$$
\begin{aligned}
g h & =g h^{\prime} \text { by assumption } \\
g^{-1}(g h) & =g^{-1}\left(g h^{\prime}\right) \text { multiplying by the same element } \\
\left(g^{-1} g\right) h & =\left(g^{-1} g\right) h^{\prime} \text { by associativity } \\
1 \cdot h & =1 \cdot h^{\prime} \text { by the definition of inverses } \\
h & =h^{\prime} \text { by the definition of the identity }
\end{aligned}
$$

2. (a) Not a group, since the inverse of 1 is -1 , which is not a non-negative integer.
(b) This is a subgroup: if σ is a product of $2 m$ transpositions and τ a product of $2 n$ transpositions then τ^{-1} will be the product of those $2 n$ transpositions in the reverse order and thus $\sigma \tau^{-1}$ is a product of $2(m+n)$ transpositions and is thus even.
(c) This is not a subgroup, since the identity permutation is not odd.
(d) This is a subgroup, since the inverse of a positive rational number is again rational, the product of two rational numbers is rational, and there exist positive rational numbers.
(e) This is not a subgroup since 1 is not irrational and thus this subset does not contain the identity.
3. (a) This is true. The maps exp : $\mathbb{R} \rightarrow \mathbb{R}^{+}$and $\log : \mathbb{R}^{+} \rightarrow \mathbb{R}$ are inverses of each other and thus bijective. Moreover, $\exp (x+y)=\exp (x) \exp (y)$ and $\log (x y)=\log (x)+\log (y)$, so they are isomorphisms.
(b) This is false, since \mathbb{Z} is countable while \mathbb{R}^{+}is uncountable.
(c) This is false, since the circle group U contains an element $\operatorname{cis}(2 \pi / 3)$ of order 3 , while \mathbb{R}^{*} contains no elements of order 3 .
4. (a) The transposition (12) has order 2, so the subgroup generated by it is just $\{(),(12)\}$.
(b) The left cosets are $\{(),(12)\}$ and $(13)\{(),(12)\}=\{(13),(123)\}$ and $(23)\{(),(12)\}=\{(23),(132)\}$.
(c) The subgroup generated by (12) and (23) must contain the products $(12)(12)=()$ and $(12)(23)=$ (123) and $(23)(12)$ and $(123)(12)=(13)$. It is thus all of S_{3}.
5. (a) The inverse is $\left(\begin{array}{llllll}3 & 6 & 4 & 1 & 5 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}\right)=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 3 & 5 & 2\end{array}\right)$.
(b) $\sigma=(134)(26)$.
(c) $\sigma=(14)(13)(26)$
(d) σ is odd since it is the product of three transpositions.
(e) the order of σ is 6 , the least common multiple of 2 and 3 (the lengths of the disjoint cycles in σ).
6. If $g H$ is a left coset of H, consider $\lambda_{g}: h \mapsto g h$ and $\lambda_{g^{-1}}: a \mapsto g^{-1} a$. By definition, λ_{g} maps H to $g H$. Moreover, if $a=g h \in g H$ then $\lambda_{g^{-1}}(a)=g^{-1} g h \in H$ so $\lambda_{g^{-1}}$ maps $g H$ to H. Finally, the two maps are inverses of each other (since multiplication by $g g^{-1}$ or $g^{-1} g$ is the identity), and thus bijections.
7. (a) By the definition of an isomorphism, $\varphi(r / 2)^{2}=\varphi(2(r / 2))=\varphi(r)$.
(b) Since φ must be surjective, there is some r with $\varphi(r)=2$. But then $\varphi(r / 2)$ is a positive rational whose square is 2 , which is impossible.
