Math 430 – Practice Midterm Solutions

- 1. (a) A group is a set G with an operation $\cdot : G \times G \to G$ so that
 - i. There is an identity element $1 \in G$ so that $1 \cdot g = g \cdot 1 = g$ for all $g \in G$,
 - ii. for each $g \in G$ there is an inverse $g^{-1} \in G$ so that $g \cdot g^{-1} = g^{-1} \cdot g = 1$,
 - iii. for all $x, y, z \in G$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.
 - (b) The cancellation law states that if gh = gh' in a group then h = h'.

$$gh = gh'$$
 by assumption
$$g^{-1}(gh) = g^{-1}(gh')$$
 multiplying by the same element
$$(g^{-1}g)h = (g^{-1}g)h'$$
 by associativity
$$1 \cdot h = 1 \cdot h'$$
 by the definition of inverses
$$h = h'$$
 by the definition of the identity

- 2. (a) Not a group, since the inverse of 1 is -1, which is not a non-negative integer.
 - (b) This is a subgroup: if σ is a product of 2m transpositions and τ a product of 2n transpositions then τ^{-1} will be the product of those 2n transpositions in the reverse order and thus $\sigma\tau^{-1}$ is a product of 2(m+n) transpositions and is thus even.
 - (c) This is not a subgroup, since the identity permutation is not odd.
 - (d) This is a subgroup, since the inverse of a positive rational number is again rational, the product of two rational numbers is rational, and there exist positive rational numbers.
 - (e) This is not a subgroup since 1 is not irrational and thus this subset does not contain the identity.
- 3. (a) This is true. The maps $\exp : \mathbb{R} \to \mathbb{R}^+$ and $\log : \mathbb{R}^+ \to \mathbb{R}$ are inverses of each other and thus bijective. Moreover, $\exp(x+y) = \exp(x) \exp(y)$ and $\log(xy) = \log(x) + \log(y)$, so they are isomorphisms.
 - (b) This is false, since \mathbb{Z} is countable while \mathbb{R}^+ is uncountable.
 - (c) This is false, since the circle group U contains an element $\operatorname{cis}(2\pi/3)$ of order 3, while \mathbb{R}^* contains no elements of order 3.
- 4. (a) The transposition (12) has order 2, so the subgroup generated by it is just $\{(), (12)\}$.
 - (b) The left cosets are $\{(), (12)\}$ and $\{(13)\}\{(), (12)\} = \{(13), (123)\}$ and $\{(23)\}\{(), (12)\} = \{(23), (132)\}$.
 - (c) The subgroup generated by (12) and (23) must contain the products (12)(12) = () and (12)(23) = (123) and (23)(12) and (123)(12) = (13). It is thus all of S_3 .
- 5. (a) The inverse is $\begin{pmatrix} 3 & 6 & 4 & 1 & 5 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 3 & 5 & 2 \end{pmatrix}$.
 - (b) $\sigma = (134)(26)$.
 - (c) $\sigma = (14)(13)(26)$

- (d) σ is odd since it is the product of three transpositions.
- (e) the order of σ is 6, the least common multiple of 2 and 3 (the lengths of the disjoint cycles in σ).
- 6. If gH is a left coset of H, consider $\lambda_g: h\mapsto gh$ and $\lambda_{g^{-1}}: a\mapsto g^{-1}a$. By definition, λ_g maps H to gH. Moreover, if $a=gh\in gH$ then $\lambda_{g^{-1}}(a)=g^{-1}gh\in H$ so $\lambda_{g^{-1}}$ maps gH to H. Finally, the two maps are inverses of each other (since multiplication by gg^{-1} or $g^{-1}g$ is the identity), and thus bijections.
- 7. (a) By the definition of an isomorphism, $\varphi(r/2)^2 = \varphi(2(r/2)) = \varphi(r)$.
 - (b) Since φ must be surjective, there is some r with $\varphi(r)=2$. But then $\varphi(r/2)$ is a positive rational whose square is 2, which is impossible.