1. (a) **Solution.** A *cyclic group* is a group G that is generated by a single element. Namely, there is some $g \in G$ with the property that, for every $h \in G$ there is an $m \in \mathbb{Z}$ with $h = g^m$.

(b) **Solution.** Suppose that G has order p. Then every element of G has order dividing p by Lagrange’s theorem. Since p is prime, the only divisors are 1 and p, and only the identity element has order 1. Thus there is some element g of order p. The powers of G

$$1, g, g^2, \ldots, g^{p-1}$$

are all distinct and there are p of them. Thus every element of G is a power of g, so G is cyclic.

2. Let

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix}$$

(a) **Solution.**

$$\sigma^{-1} = \begin{pmatrix} 3 & 6 & 4 & 1 & 5 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 3 & 5 & 2 \end{pmatrix}$$

(b) **Solution.** $\sigma = (134)(26)$.

(c) **Solution.** $\sigma = (14)(13)(26)$.

(d) **Solution.** σ is odd, since it is the product of an odd number of transpositions.

(e) **Solution.** The order of σ is the least common multiple of the lengths of the cycles in its disjoint cycle decomposition, namely $\text{lcm}(2, 3) = 6$.

3. **Solution.** Suppose H is a subgroup of S_3. Then H contains the identity ρ_0. If H contains ρ_1 then it contains $\rho_2 = \rho_1^2$ and vice versa. Each μ_i has order 2, so H could be just $\{\rho_0, \mu_i\}$ for some i.

1
By Lagrange’s theorem, the number of elements in H is either 1, 2, 3, or 6, so once H contains four elements it must be all of S_3. If H contains two μs then it contains their product, which is either ρ_1 or ρ_2. We must then have $H = S_3$. Similarly, if H contains all ρs and a μ then we must have $H = S_3$.

As usual, the trivial subgroup and the whole group are normal. Moreover, $\{\rho_0, \rho_1, \rho_2\}$ is normal since it has index 2. The subgroups of order 2 are not normal since $(12)(13)(12) = (23)$, $(23)(12)(23) = (13)$ and $(13)(23)(13) = (12)$, so in each case there is some $g \in S_3$ with $g\mu g^{-1} \notin \{\rho_0, \mu\}$.

In summary the subgroups are

- $\{\rho_0\}$ (normal),
- $\{\rho_0, \mu_1\}$ (not normal),
- $\{\rho_0, \mu_2\}$ (not normal),
- $\{\rho_0, \mu_3\}$ (not normal),
- $\{\rho_0, \rho_1, \rho_2\}$ (normal),
- S_3 (normal).

4. (a)
Solution. A zero divisor a in a ring R is a nonzero element of R so that there is some other nonzero element $b \in R$ with $ab = 0$.

(b)
Solution. A unit u in a ring R with unity is an element $u \in R$ so that there is some other element $v \in R$ with $uv = 1$.

(c)
Solution. Units: 1, 3, 7, 9. Zero divisors: 2, 4, 5, 6, 8. Note that 0 is not a zero divisor.

5. (a)
Solution. $x^2 - 2$ is irreducible because $\sqrt{2}$ is not rational (or by Eisenstein’s criterion for $p = 2$).

(b)
Solution. $x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$ so it is reducible. We can use the intermediate value theorem to prove this rigorously: $0^2 - 2 < 0$ and $2^2 - 2 > 0$ so there is a square root of 2 in \mathbb{R}.

(c)
Solution. Since $3^2 - 2 \equiv 0 \pmod{7}$, it is reducible.

(d)
Solution. Let $f(x) = x^4 + x^2 + 1$. It has no roots since $x^4 \geq 0$ and $x^2 \geq 0$ for all $x \in \mathbb{R}$. Suppose $f(x) = (x^2 + ax + b)(x^2 + cx + d)$.

Then

\[
\begin{align*}
 a + c &= 0, \\
 b + ac + d &= 1, \\
 ad + bc &= 0, \\
 bd &= 1.
\end{align*}
\]

So $c = -a$ and $d = 1/b$ from the first and last equations. The third equation then implies $a/b - ab = 0$ so $a = 0$ or $b = \pm 1$. If $a = 0$, the second equation implies $b + 1/b = 1$ so
\[b^2 - b + 1 = 0, \] which has no real roots. If \(b = d = -1 \), the second equation implies \(-a^2 = 3\), which has no real roots. If \(b = d = 1 \), the second equation implies \(-a^2 = -1\), so \(a = \pm 1 \). Thus
\[x^4 + x^2 + 1 = (x^2 - x + 1)(x^2 + x + 1) \]
is reducible.

(e) **Solution.** The factorization in part (d) holds in \(\mathbb{Z}[x] \) and thus determines a factorization in \(\mathbb{Z}_2[x] \) by reducing the coefficients modulo 2. So
\[x^4 + x^2 + 1 = (x^2 + x + 1)^2 \]
is reducible.

(f) **Solution.** Evaluating this polynomial at \(x = 1 \) yields \(1 + 1 + 1 + 1 = 0 \), so it is reducible.

6. (a) **Solution.** Since \(\sqrt{2} \in \mathbb{R} \), \(S \) is a subset of \(\mathbb{R} \). The sum of two elements
\[(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \]
is again an element of \(S \), as is the product of two elements
\[(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2} \]
and the negation of an element
\[-(a + b\sqrt{2}) = (-a) + (-b)\sqrt{2}. \]
Finally, the inverse of an element is an element of \(S \) as well:
\[\frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} = \frac{a}{a^2 - 2b^2} + \frac{-b}{a^2 - 2b^2}\sqrt{2}. \]

(b) **Solution.** We first show that \(\langle x^2 - 2 \rangle \subseteq \mathcal{I} \). Suppose \(f(x) = (x^2 - 2)g(x) \in \langle x^2 - 2 \rangle \). Then
\[f(\sqrt{2}) = ((\sqrt{2})^2 - 2)g(\sqrt{2}) = 0, \quad \text{so} \quad f \in \mathcal{I}. \]
Now suppose that \(f(x) \in \mathcal{I} \), so that \(f(\sqrt{2}) = 0 \). Since \(\sqrt{2} \) is a root of \(f \), we may factor \(f(x) = (x - \sqrt{2})g_1(x) \) for some \(g_1(x) \in S[x] \).
Consider the map \(\sigma : S[x] \to S[x] \) which maps each coefficient \(a + b\sqrt{2} \) to \(a - b\sqrt{2} \). It is a ring homomorphism, and thus
\[\sigma(f) = \sigma(x - \sqrt{2})\sigma(g_1) \]
\[f = (x + \sqrt{2})\sigma(g_1), \]
since \(f \in \mathbb{Q}[x] \) and is thus fixed by \(\sigma \). Therefore \(f(-\sqrt{2}) = 0 \), so \(f(x) \) is divisible by \(x + \sqrt{2} \). We can thus factor
\[f(x) = (x - \sqrt{2})g_1(x) = (x - \sqrt{2})(x + \sqrt{2})g_2(x) = (x^2 - 2)g_2(x). \]
Thus \(\mathcal{I} \subseteq \langle x^2 - 2 \rangle \), so in fact the two ideals are equal.
(c) Define a map \(\phi : \mathbb{Q}[x] \to S \) by
\[
\phi(f) = f(\sqrt{2}).
\]
By part (b), the kernel of \(\phi \) is \(\langle x^2 - 2 \rangle \). Moreover, \(\phi \) is surjective since \(\phi(a + bx) = a + b\sqrt{2} \). So by the first isomorphism theorem, \(S \) is isomorphic to \(\mathbb{Q}[x]/\langle x^2 - 2 \rangle \).

7. (a) Solution. A principal ideal in a commutative ring \(R \) with unity is an ideal \(I \) of the form \(\langle a \rangle = \{ ra : r \in R \} \) for some \(a \in R \).

(b) Solution. Suppose \(I \subseteq \mathbb{Z} \) is an ideal. If \(I = 0 \) then \(I = \langle 0 \rangle \) is principal. Otherwise, there is some positive element of \(I \) since \(I \) is closed under negation; let \(a \) be the smallest positive element of \(I \).
I claim that \(I = \langle a \rangle \).
Certainly \(\langle a \rangle \subseteq I : na \in I \) for all \(n \mathbb{Z} \) since \(I \) is an ideal and \(a \in I \). Suppose that \(b \in I \). Using the division algorithm, we may write \(b = qa + r \) with \(0 \leq r < a \). Then \(r = b - qa \in I \). But we chose \(a \) to be the smallest positive element of \(I \), so we must have \(r = 0 \). Therefore \(b = qa \in \langle a \rangle \) and \(I \subseteq \langle a \rangle \).

8. (a) Solution. A greatest common divisor of two elements \(a, b \) in an integral domain \(R \) is an element \(d \in R \) so that \(d \mid a \) and \(d \mid b \), and if \(e \in R \) is any other element with \(e \mid a \) and \(e \mid b \) then \(e \mid d \).

(b) Solution. Let \(I = \langle a, b \rangle = \{ ra + sb : r, s \in R \} \) be the ideal generated by \(a \) and \(b \). Since \(R \) is a PID, there is some element \(d \in R \) with \(\langle a, b \rangle = \langle d \rangle \). I claim that \(d \) is a greatest common divisor of \(a \) and \(b \).
Since \(a \in \langle d \rangle \) we have \(d \mid a \), and likewise for \(b \). Now suppose \(a = xe \) and \(b = ye \). Since \(\langle a, b \rangle = \langle d \rangle \), there are elements \(r, s \in R \) with \(d = ra + bs \). Then
\[
d = ra + bs = (rx + sy)e,
\]
so \(e \mid d \).