Math 430 - Practice Final Solutions

April 28, 2016

1. (a)

Solution. A cyclic group is a group G that is generated by a single element. Namely, there is some $g \in G$ with the property that, for every $h \in G$ there is an $m \in \mathbb{Z}$ with $h=g^{m}$.
(b)

Solution. Suppose that G has order p. Then every element of G has order dividing p by Lagrange's theorem. Since p is prime, the only divisors are 1 and p, and only the identity element has order 1 . Thus there is some element g of order p. The powers of G

$$
1, g, g^{2}, \ldots, g^{p-1}
$$

are all distinct and there are p of them. Thus every element of G is a power of g, so G is cyclic.
2. Let

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 4 & 1 & 5 & 2
\end{array}\right)
$$

(a)

Solution.

$$
\begin{aligned}
\sigma^{-1} & =\left(\begin{array}{llllll}
3 & 6 & 4 & 1 & 5 & 2 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\right) \\
& =\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
4 & 6 & 1 & 3 & 5 & 2
\end{array}\right)
\end{aligned}
$$

(b)

Solution. $\sigma=(134)(26)$.
(c)

Solution. $\sigma=(14)(13)(26)$.
(d)

Solution. σ is odd, since it is the product of an odd number of transpositions.
(e)

Solution. The order of σ is the least common multiple of the lengths of the cycles in its disjoint cycle decomposition, namely $\operatorname{lcm}(2,3)=6$.
3.

Solution. Suppose H is a subgroup of S_{3}. Then H contains the identity ρ_{0}. If H contains ρ_{1} then it contains $\rho_{2}=\rho_{1}^{2}$ and vice versa. Each μ_{i} has order 2 , so H could be just $\left\{\rho_{0}, \mu_{i}\right\}$ for some i.

By Lagrange's theorem, the number of elements in H is either $1,2,3$, or 6 , so once H contains four elements it must be all of S_{3}. If H contains two μ s then it contains their product, which is either ρ_{1} or ρ_{2}. We must then have $H=S_{3}$. Similarly, if H contains all ρ s and a μ then we must have $H=S_{3}$.
As usual, the trivial subgroup and the whole group are normal. Moreover, $\left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}$ is normal since it has index 2. The subgroups of order 2 are not normal since $(12)(13)(12)=(23),(23)(12)(23)=(13)$ and $(13)(23)(13)=(12)$, so in each case there is some $g \in S_{3}$ with $g \mu_{i} g^{-1} \notin\left\{\rho_{0}, \mu_{i}\right\}$.
In summary the subgroups are

$$
\begin{aligned}
& \left\{\rho_{0}\right\}(\text { normal }), \\
& \left\{\rho_{0}, \mu_{1}\right\}(\text { not normal }), \\
& \left\{\rho_{0}, \mu_{2}\right\}(\text { not normal }), \\
& \left\{\rho_{0}, \mu_{3}\right\}(\text { not normal }), \\
& \left\{\rho_{0}, \rho_{1}, \rho_{2}\right\}(\text { normal }), \\
& S_{3} \text { (normal). }
\end{aligned}
$$

4. (a)

Solution. A zero divisor a in a ring R is a nonzero element of R so that there is some other nonzero element $b \in R$ with $a b=0$.
(b)

Solution. A unit u in a ring R with unity is an element $u \in R$ so that there is some other element $v \in R$ with $u v=1$.
(c)

Solution. Units: $1,3,7,9$. Zero divisors: $2,4,5,6,8$. Note that 0 is not a zero divisor.
5. (a)

Solution. $x^{2}-2$ is irreducible because $\sqrt{2}$ is not rational (or by Eisenstein's criterion for $p=2$). (b)

Solution. $x^{2}-2=(x-\sqrt{2})(x+\sqrt{2})$ so it is reducible. We can use the intermediate value theorem to prove this rigorously: $0^{2}-2<0$ and $2^{2}-2>0$ so there is a square root of 2 in \mathbb{R}.
(c)

Solution. Since $3^{2}-2 \equiv 0(\bmod 7)$, it is reducible.
(d)

Solution. Let $f(x)=x^{4}+x^{2}+1$. It has no roots since $x^{4} \geq 0$ and $x^{2} \geq 0$ for all $x \in \mathbb{R}$. Suppose

$$
f(x)=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)
$$

Then

$$
\begin{array}{r}
a+c=0 \\
b+a c+d=1 \\
a d+b c=0 \\
b d=1
\end{array}
$$

So $c=-a$ and $d=1 / b$ from the first and last equations. The third equation then implies $a / b-a b=0$ so $a=0$ or $b= \pm 1$. If $a=0$, the second equation implies $b+1 / b=1$ so
$b^{2}-b+1=0$, which has no real roots. If $b=d=-1$, the second equation implies $-a^{2}=3$, which has no real roots. If $b=d=1$, the second equation implies $-a^{2}=-1$, so $a= \pm 1$. Thus

$$
x^{4}+x^{2}+1=\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)
$$

is reducible.
(e)

Solution. The factorization in part (d) holds in $\mathbb{Z}[x]$ and thus determines a factorization in $\mathbb{Z}_{2}[x]$ by reducing the coefficients modulo 2. So

$$
x^{4}+x^{2}+1=\left(x^{2}+x+1\right)^{2}
$$

is reducible.
(f)

Solution. Evaluating this polynomial at $x=1$ yields $1+1+1+1=0$, so it is reducible.
6. (a)

Solution. Since $\sqrt{2} \in \mathbb{R}, S$ is a subset of \mathbb{R}. The sum of two elements

$$
(a+b \sqrt{2})+(c+d \sqrt{2})=(a+c)+(b+d) \sqrt{2}
$$

is again an element of S, as is the product of two elements

$$
(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2}
$$

and the negation of an element

$$
-(a+b \sqrt{2})=(-a)+(-b) \sqrt{2}
$$

Finally, the inverse of an element is an element of S as well:

$$
\frac{1}{a+b \sqrt{2}}=\frac{a-b \sqrt{2}}{a^{2}-2 b^{2}}=\frac{a}{a^{2}-2 b^{2}}+\frac{-b}{a^{2}-2 b^{2}} \sqrt{2} .
$$

(b)

Solution. We first show that $\left\langle x^{2}-2\right\rangle \subseteq \mathcal{I}$. Suppose $f(x)=\left(x^{2}-2\right) g(x) \in\left\langle x^{2}-2\right\rangle$. Then $f(\sqrt{2})=\left((\sqrt{2})^{2}-2\right) g(\sqrt{2})=0$, so $f \in \mathcal{I}$.
Now suppose that $f(x) \in \mathcal{I}$, so that $f(\sqrt{2})=0$. Since $\sqrt{2}$ is a root of f, we may factor $f(x)=$ $(x-\sqrt{2}) g_{1}(x)$ for some $g_{1}(x) \in S[x]$.
Consider the map $\sigma: S[x] \rightarrow S[x]$ which maps each coefficient $a+b \sqrt{2}$ to $a-b \sqrt{2}$. It is a ring homomorphism, and thus

$$
\begin{aligned}
\sigma(f) & =\sigma(x-\sqrt{2}) \sigma\left(g_{1}\right) \\
f & =(x+\sqrt{2}) \sigma\left(g_{1}\right),
\end{aligned}
$$

since $f \in \mathbb{Q}[x]$ and is thus fixed by σ. Therefore $f(-\sqrt{2})=0$, so $f(x)$ is divisible by $x+\sqrt{2}$. We can thus factor

$$
f(x)=(x-\sqrt{2}) g_{1}(x)=(x-\sqrt{2})(x+\sqrt{2}) g_{2}(x)=\left(x^{2}-2\right) g_{2}(x)
$$

Thus $\mathcal{I} \subseteq\left\langle x^{2}-2\right\rangle$, so in fact the two ideals are equal.
(c) Define a map $\phi: \mathbb{Q}[x] \rightarrow S$ by

$$
\phi(f)=f(\sqrt{2})
$$

By part (b), the kernel of ϕ is $\left\langle x^{2}-2\right\rangle$. Moreover, ϕ is surjective since $\phi(a+b x)=a+b \sqrt{2}$. So by the first isomorphism theorem, S is isomorphic to $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$.
7. (a)

Solution. A principal ideal in a commutative ring R with unity is an ideal I of the form $\langle a\rangle=$ $\{r a: r \in R\}$ for some $a \in R$.
(b)

Solution. Suppose $I \subset \mathbb{Z}$ is an ideal. If $I=0$ then $I=\langle 0\rangle$ is principal. Otherwise, there is some positive element of I since I is closed under negation; let a be the smallest positive element of I. I claim that $I=\langle a\rangle$.
Certainly $\langle a\rangle \subseteq I: n a \in I$ for all $n \mathbb{Z}$ since I is an ideal and $a \in I$. Suppose that $b \in I$. Using the division algorithm, we may write $b=q a+r$ with $0 \leq r<a$. Then $r=b-q a \in I$. But we chose a to be the smallest positive element of I, so we must have $r=0$. Therefore $b=q a \in\langle a\rangle$ and $I \subseteq\langle a\rangle$.
8. (a)

Solution. A greatest common divisor of two elements a, b in an integral domain R is an element $d \in R$ so that $d \mid a$ and $d \mid b$, and if $e \in R$ is any other element with $e \mid a$ and $e \mid b$ then $e \mid d$.
(b)

Solution. Let $I=\langle a, b\rangle=\{r a+s b: r, s \in R\}$ be the ideal generated by a and b. Since R is a PID, there is some element $d \in R$ with $\langle a, b\rangle=\langle d\rangle$. I claim that d is a greatest common divisor of a and b.
Since $a \in\langle d\rangle$ we have $d \mid a$, and likewise for b. Now suppose $a=x e$ and $b=y e$. Since $\langle a, b\rangle=\langle d\rangle$, there are elements $r, s \in R$ with $d=r a+b s$. Then

$$
d=r a+b s=(r x+s y) e
$$

so $e \mid d$.

