Math 430 Midterm Exam Solutions

1. Consider the symmetry group G of a rectangle with side lengths 1 and 2 .

(a) (4 points) List the elements of G.

Solution. You can either give geometric descriptions - \{id, $\left.\mu_{h}, \mu_{v}, \rho\right\}$ where μ_{h} and μ_{v} are horizontal and vertical reflections and ρ is rotation by 180 degrees - or descriptions in terms of the action on vertices - $\{(),(14)(23),(12)(34),(13)(24)\}$.
(b) (4 points) Show that G is abelian.

Solution. Every element has order 2, so G is abelian by a homework problem. Alternately, you can give the Cayley table of G and observe that it is symmetric.
(c) (5 points) List the subgroups of G.

Solution.

- $\{\mathrm{id}\}$,
- $\left\langle\mu_{h}\right\rangle=\left\{\mathrm{id}, \mu_{h}\right\}$,
- $\left\langle\mu_{v}\right\rangle=\left\{\mathrm{id}, \mu_{v}\right\}$,
- $\langle\rho\rangle=\{\mathrm{id}, \rho\}$,
- $G=\left\{\mathrm{id}, \mu_{h}, \mu_{v}, \rho\right\}$.
(d) (5 points) Do there exist nontrivial subgroups H and K so that G is an internal direct product of H and K ? Explain.

Solution. Yes. Any two of the subgroups of order 2 will work. For example, if we set $H=\left\langle\mu_{h}\right\rangle$ and $K=\left\langle\mu_{v}\right\rangle$ then

- $H \cap K=\{\mathrm{id}\}$,
- $\# G=\# H \cdot \# K$,
- G is abelian, so $h k=k h$ for all $h \in H$ and $k \in K$.

2. Let $\sigma=(123)(4567) \in S_{7}$.
(a) (5 points) What is the order of σ ? Explain.

Solution. Since σ is a product of disjoint cycles of length 3 and 4 , it has order $\operatorname{lcm}(3,4)=12$.
(b) (5 points) Find σ^{-1}.

Solution. We reverse the order of the cycles, yielding $(7654)(321)=(132)(4765)$.
(c) (5 points) Is σ even or odd? Why?

Solution. Since σ is the product of a 3 -cycle (even) and a 4 -cycle (odd), it is odd. Alternately, you could give a decomposition of σ into transpositions and note that there are an odd number of them (the shortest decomposition will have 5 transpositions).
(d) (5 points) Give an isomorphism between the subgroup $\langle\sigma\rangle$ generated by σ and \mathbb{Z}_{n} for some n.

Solution. The map

$$
\begin{aligned}
f: \mathbb{Z}_{12} & \rightarrow\langle\sigma\rangle \\
a & \mapsto \sigma^{a}
\end{aligned}
$$

is an isomorphism. It is well defined since $\sigma^{12}=()$, bijective since the order of σ is 12 and a homomorphism since $\sigma^{a+b}=\sigma^{a} \sigma^{b}$ for all $a, b \in \mathbb{Z}$.
(e) (6 points) Find all $\tau \in S_{7}$ that also generate $\langle\sigma\rangle$, i.e. all τ with $\langle\tau\rangle=\langle\sigma\rangle$.

Solution. The other generators of $\langle\sigma\rangle$ will be the powers of σ that also have order 12: the σ^{a} for $\operatorname{gcd}(a, 12)=1$. These are

$$
\begin{aligned}
\sigma^{1} & =(123)(4567) \\
\sigma^{5} & =(132)(4567) \\
\sigma^{7} & =(123)(4765) \\
\sigma^{11} & =(132)(4765)
\end{aligned}
$$

3. Suppose H and K are normal subgroups of a group G.
(a) (8 points) Prove that $H \cap K$ is a subgroup of G.

Solution. We check that it contains the identity and is closed under multiplication and inversion.

- Since H and K are subgroups, $1 \in H$ and $1 \in K$ so $1 \in H \cap K$.
- Let $g, g^{\prime} \in H \cap K$. Since H and K are subgroups, $g g^{\prime} \in H$ and $g g^{\prime} \in K$. Thus $g g^{\prime} \in H \cap K$.
- Let $g \in H \cap K$. Since H and K are subgroups, $g^{-1} \in H$ and $g^{-1} \in K$. Thus $g^{-1} \in K$.
(b) (8 points) Prove that $H \cap K$ is a normal subgroup of G.

Solution. Suppose that $g \in G$ and $h \in H \cap K$. We show that $g h g^{-1} \in H \cap K$, and thus that $g(H \cap K) g^{-1} \subseteq H \cap K$. This proves that $H \cap K$ is normal by a theorem from the book.
Since $h \in H$ and H is normal, $g h g^{-1} \in H$. Similarly, since $h \in K$ and K is normal, $g h g^{-1} \in K$. Thus $g h g^{-1} \in H \cap K$ and $H \cap K$ is normal.
4. (8 points) Consider the subgroup $H=D_{5}$ of $G=S_{5}$. How many cosets does H have in G ? Justify your answer.

Solution. By Lagrange's theorem, $[G: H]=\frac{\# G}{\# H}=\frac{5!}{2 \cdot 5}=12$.
5. (8 points) Suppose G is a group and $g, h \in G$. Prove that the order of $h g h^{-1}$ is the same as the order of g.

Solution. We showed that $\left(h g h^{-1}\right)^{m}=h g^{m} h^{-1}$ as a homework problem (for all $m \in \mathbb{Z}$). Note that $h g^{m} h^{-1}=1$ if and only if $g^{m}=1$. Thus $\left(h g h^{-1}\right)^{m}=1$ if and only if $g^{m}=1$. Since the order of an element is the smallest positive integer m with the m th power equal to 1 , the order of g will be the same as the order of $h g h^{-1}$.
6. (Bonus) Prove that there is no cyclic group G that has 34 different generators (i.e. $G=\langle g\rangle$ for 34 different $g \in G)$.

Solution. The number of generators of a cyclic group of order n is $\phi(n)$. So we need to show that there is no integer n with $\phi(n)=34=2 \cdot 17$. Recall that if $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$ then $\phi(n)=\prod_{i=1}^{k}\left(p_{i}-1\right) p_{i}^{e_{i}-1}$.

- If n were prime then $\phi(n)=n-1$, so we would need $n=35$. But 35 is not prime.
- More generally, suppose p divides n. Then $p-1$ divides $\phi(n)$. The divisors of 34 are $d=1,2,17,34$. Of these, only $d=1$ and $d=2$ have $d+1$ prime, so the only primes that can divide n are 2 and 3.. If 9 divides n then 3 would divide $\phi(n)$, which it doesn't. If 8 divides n then 4 would divide $\phi(n)$, which it doesn't. So the only possible n are $1,2,4,3,6,12$, none of which are large enough to have $\phi(n)=34$.

