Math 430 Midterm Exam

Name	
Problem 1 (18 points)	
Problem 2 (26 points)	
Problem 3 (16 points)	
Problem 4 (8 points)	
Problem 5 (8 points)	
Problem 6 (Bonus)	
Total (76 points)	

l.	1. Consider the s	symmetry group G of a rectangle with side lengths 1 and 2.
	(a) (4 points) List the elements of G .
	(b) (4 points) Show that G is abelian.
	(c) (5 points) List the subgroups of G .
) Do there exist nontrivial subgroups H and K so that G is an internal direct product K ? Explain.

2.	Let $\sigma = 0$	(123)((4567)	$\in S_7$	7.

(a) (5 points) What is the order of σ ? Explain.

(b) (5 points) Find σ^{-1} .

(c) (5 points) Is σ even or odd? Why?

(d) (5 points) Give an isomorphism between the subgroup $\langle \sigma \rangle$ generated by σ and \mathbb{Z}_n for some n.

(e) (6 points) Find all $\tau \in S_7$ that also generate $\langle \sigma \rangle$, i.e. all τ with $\langle \tau \rangle = \langle \sigma \rangle$.

- 3. Suppose H and K are normal subgroups of a group G.
 - (a) (8 points) Prove that $H \cap K$ is a subgroup of G.

(b) (8 points) Prove that $H \cap K$ is a normal subgroup of G.

4. (8 points) Consider the subgroup $H=D_5$ of $G=S_5$. How many cosets does H have in G? Justify your answer.

5. (8 points) Suppose G is a group and $g, h \in G$. Prove that the order of hgh^{-1} is the same as the order of g.

6. (Bonus) Prove that there is no cyclic group G that has 90 different generators (i.e. $G=\langle g \rangle$ for 90 different $g \in G$).