Math 430 Midterm Exam | Name | | |-----------------------|--| | Problem 1 (18 points) | | | Problem 2 (26 points) | | | Problem 3 (16 points) | | | Problem 4 (8 points) | | | Problem 5 (8 points) | | | Problem 6 (Bonus) | | | Total (76 points) | | | l. | 1. Consider the s | symmetry group G of a rectangle with side lengths 1 and 2. | |----|-------------------|--| | | (a) (4 points |) List the elements of G . | | | (b) (4 points |) Show that G is abelian. | | | (c) (5 points |) List the subgroups of G . | | | |) Do there exist nontrivial subgroups H and K so that G is an internal direct product K ? Explain. | | 2. | Let $\sigma = 0$ | (123)(| (4567) | $\in S_7$ | 7. | |----|------------------|--------|--------|-----------|----| (a) (5 points) What is the order of σ ? Explain. (b) (5 points) Find σ^{-1} . (c) (5 points) Is σ even or odd? Why? (d) (5 points) Give an isomorphism between the subgroup $\langle \sigma \rangle$ generated by σ and \mathbb{Z}_n for some n. (e) (6 points) Find all $\tau \in S_7$ that also generate $\langle \sigma \rangle$, i.e. all τ with $\langle \tau \rangle = \langle \sigma \rangle$. - 3. Suppose H and K are normal subgroups of a group G. - (a) (8 points) Prove that $H \cap K$ is a subgroup of G. (b) (8 points) Prove that $H \cap K$ is a normal subgroup of G. 4. (8 points) Consider the subgroup $H=D_5$ of $G=S_5$. How many cosets does H have in G? Justify your answer. 5. (8 points) Suppose G is a group and $g, h \in G$. Prove that the order of hgh^{-1} is the same as the order of g. 6. (Bonus) Prove that there is no cyclic group G that has 90 different generators (i.e. $G=\langle g \rangle$ for 90 different $g \in G$).