Math 430 - Problem Set 5 Solutions

Due March 18, 2016

10.4. Let T be the group of nonsingular upper triangular 2×2 matrices with entries in \mathbb{R}; that is, matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)
$$

where $a, b, c \in \mathbb{R}$ and $a c \neq 0$. Let U consist of matrices of the form

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

where $x \in \mathbb{R}$.
(a) Show that U is a subgroup of T.

Solution. Taking $x=0$, we see that the identity matrix is in U. The inverse of $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ is $\left(\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right)$, which is also in U. Finally,

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & x+y \\
0 & 1
\end{array}\right),
$$

which is in U.
(b) Prove that U is abelian.

Solution. This follows from the formula for multiplication of elements of U given above, together with the commutativity of addition in \mathbb{R}.
(c) Prove that U is normal in T.

Solution.

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
a & a x+b \\
0 & c
\end{array}\right)\left(\begin{array}{cc}
1 / a & -b /(a c) \\
0 & 1 / c
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & a x / c \\
0 & 1
\end{array}\right)
\end{aligned}
$$

(d) Show that T / U is abelian.

Solution. Note that

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right)\left(\begin{array}{cc}
1 & b / a \\
0 & 1
\end{array}\right)
$$

so every coset in T / U has a representative that is a diagonal matrices. Since diagonal matrices commute with each other, T / U is commutative.
Alternatively, note that

$$
\begin{aligned}
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
0 & c^{\prime}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)^{-1}\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
0 & c^{\prime}
\end{array}\right)^{-1} & =\left(\begin{array}{cc}
a a^{\prime} & a b^{\prime}+b c^{\prime} \\
0 & c c^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 /\left(a a^{\prime}\right) & -\left(b^{\prime} c+b c^{\prime}\right) /\left(a c a^{\prime} c^{\prime}\right) \\
0 & 1 /\left(c c^{\prime}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 & \left(a b^{\prime}-b^{\prime} c\right) /\left(c c^{\prime}\right) \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Since U contains the commutator subgroup of $T, T / U$ is abelian by 10.14 .
(e) Is T normal in $\mathrm{GL}_{2}(\mathbb{R})$?

Solution. No. For example,

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) .
$$

10.7. Prove or disprove: If H is a normal subgroup of G such that H and G / H are abelian, then G is abelian.

Solution. $U \triangleleft T$ from the previous problem provides a counterexample, as does $A_{3} \triangleleft S_{3}$.
10.9. Prove or disprove: If H and G / H are cyclic, then G is cyclic.

Solution. $A_{3} \triangleleft S_{3}$ provides a counterexample, as does $\mathbb{Z}_{2} \triangleleft \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
10.14. Let G be a group and let $G^{\prime}=\left\langle a b a^{-1} b^{-1}\right\rangle$; that is, G^{\prime} is the subgroup of all finite products of elements in G of the form $a b a^{-1} b^{-1}$. The subgroup G^{\prime} is called the commutator subgroup of G.
(a) Show that G^{\prime} is a normal subgroup of G.

Solution. Suppose $\gamma=a b a^{-1} b^{-1}$ is a generator of G^{\prime}. Since $g \gamma g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)\left(g a g^{-1}\right)^{-1}\left(g b g^{-1}\right)^{-1}$, we have that $g \gamma g^{-1} \in G^{\prime}$. Since conjugation by g is a homomorphism, every product of such elements will also be an element of G^{\prime}. Thus G^{\prime} is normal.
Alternatively, note that $g \gamma g^{-1}=g \gamma g^{-1} \gamma^{-1} \gamma \in G^{\prime}$ since $\gamma \in G^{\prime}$ and $g \gamma g^{-1} \gamma^{-1}$ is a commutator.
(b) Let N be a normal subgroup of G. Prove that G / N is abelian if and only if N contains the commutator subgroup of G.
Solution. Suppose $a, b \in G$. Then

$$
\begin{aligned}
(a N)(b N)=(b N)(a N) & \Leftrightarrow N a b=N b a \\
& \Leftrightarrow N a b a^{-1} b^{-1}=N \\
& \Leftrightarrow a b a^{-1} b^{-1} \in N .
\end{aligned}
$$

So

$$
\begin{aligned}
G / N \text { is abelian } & \Leftrightarrow(a N)(b N)=(b N)(a N) \text { for all } a, b \in G \\
& \Leftrightarrow a b a^{-1} b^{-1} \in N \text { for all } a, b \in G \\
& \Leftrightarrow G^{\prime} \subseteq N .
\end{aligned}
$$

11.2. Which of the following maps are homomorphisms? If the map is a homomorphism, what is the kernel?
(a) $\phi: \mathbb{R}^{*} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by

$$
\phi(a)=\left(\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right)
$$

Solution. This is a homomorphism since $\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & b\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & a b\end{array}\right)$. The kernel is $\{1\} \subset \mathbb{R}^{*}$.
(b) $\phi: \mathbb{R} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by

$$
\phi(a)=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right)
$$

Solution. This is a homomorphism since $\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ b & a\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ a+b & 1\end{array}\right)$. The kernel is $\{0\} \subset \mathbb{R}$.
(c) $\phi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a+d
$$

Solution. This is not a homomorphism since it maps the identity to 2 , which is not the identity in \mathbb{R}.
(d) $\phi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$ defined by

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a d-b c
$$

Solution. This is a homomorphism, since

$$
\begin{aligned}
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right) & =\phi\left(\left(\begin{array}{ll}
a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\
c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}
\end{array}\right)\right) \\
& =\left(a a^{\prime}+b c^{\prime}\right)\left(c b^{\prime}+d d^{\prime}\right)-\left(a b^{\prime}+b d^{\prime}\right)\left(c a^{\prime}+d c^{\prime}\right) \\
& =a d a^{\prime} d^{\prime}+b c b^{\prime} c^{\prime}-a d b^{\prime} c^{\prime}-b c a^{\prime} d^{\prime} \\
& =(a d-b c)\left(a^{\prime} d^{\prime}-b^{\prime} c^{\prime}\right) \\
& =\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right) \phi\left(\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right) .
\end{aligned}
$$

The kernel is $\mathrm{SL}_{2}(\mathbb{R})$, the subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ consisting of matrices of determinant 1 .
(e) $\phi: \mathbb{M}_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=b,
$$

where $\mathbb{M}_{2}(\mathbb{R})$ is the additive group of 2×2 matrices with entries in \mathbb{R}.
Solution. This is a homomorphism, since

$$
\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right)=b+b^{\prime}=\phi\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)+\phi\left(\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)\right) .
$$

The kernel is the group (under addition) of lower triangular matrices:

$$
\left\{\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right): a, b, c \in \mathbb{R}\right\} .
$$

11.9. If $\phi: G \rightarrow H$ is a group homomorphism and G is abelian, prove that $\phi(G)$ is abelian.

Solution. If $x, y \in \phi(G)$ then there exist $a, b \in G$ with $x=\phi(a)$ and $y=\phi(b)$. Then $x y=\phi(a) \phi(b)=$ $\phi(a b)=\phi(b a)=\phi(b) \phi(a)=y x$, so $\phi(G)$ is abelian.

