
Math 430 – Problem Set 4 Solutions

Due March 18, 2016

6.18. If [G : H] = 2, prove that gH = Hg.

Solution. Since there are only two left cosets of H, which are disjoint, and one of them is H itself,
the left cosets are H and G−H. The same holds for the right cosets. Moreover, gH = H iff g ∈ H iff
Hg = H, and gH = G−H iff g 6∈ H iff Hg = G−H. Thus Hg = gH for all g ∈ G.

9.8. Prove that Q is not isomorphic to Z.

Solution. Suppose that φ : Q → Z is an isomorphism. Since φ is surjective, there is an x ∈ Q with
φ(x) = 1. Then 2φ(x/2) = φ(x) = 1, but there is no integer n with 2n = 1. Thus φ cannot exist.

9.12. Prove that S4 is not isomorphic to D12.

Solution. Note that D12 has an element of order 12 (rotation by 30 degrees), while S4 has no element
of order 12. Since orders of elements are preserved under isomorphisms, S4 cannot be isomorphic to
D12.

9.23. Prove or disprove the following assertion. Let G,H, and K be groups. If G×K ∼= H×K, then G ∼= H.

Solution. Take K =
∏∞

i=1 Z and G = Z and H = Z× Z. Then

G×K ∼= K ∼= H ×K

but G 6∼= H. Thus the assertion is false.

Note that the assertion is true if K is finite, but it’s difficult to show. Many people tried to used an
isomorphism φ : G×K → H ×K to construct an isomorphism G→ H. The difficulty is that φ does
not necessarily map G× {1} to H × {1} (and if it does, it may not be surjective).

9.29. Show that Sn is isomorphic to a subgroup of An+2.

Solution. Let τ = (n+ 1, n+ 2) ∈ Sn+2. Identifying Sn with the subgroup of Sn+2 that fix n+ 1 and
n+ 2, we define

φ : Sn → An+2

σ 7→

{
σ if σ even

στ if σ odd

We check that φ is an injective homomorphism. Note that στ = τσ for all σ ∈ Sn. Then

φ(σ1σ2) =


σ1σ2 = φ(σ1)φ(σ2) if σ1 even, σ2 even,

σ1σ2τ = φ(σ1)φ(σ2) if σ1 even, σ2 odd,

σ1τσ2 = φ(σ1)φ(σ2) if σ1 odd, σ2 even,

σ1σ2τ
2 = φ(σ1)φ(σ2) if σ1 odd, σ2 odd.

Thus φ is a homomorphism. Moreover, since στ is never 1 and φ is the identity on An, φ is injective.
Thus it defines an isomorphism with its image, a subgroup of An+2.
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9.40. Find two nonisomorphic groups G and H such that Aut(G) ∼= Aut(H).

Solution. The simplest example is the trivial group and Z2, both of which have trivial automorphism
group. Other examples include G = Z3 and H = Z6 (both of which have automorphism group
isomorphic to Z2), G = Z7 and H = Z18 (both of which have isomorphism group isomorphic to Z6).
A more interesting example is G = Z2 × Z2 and H = S3, both of which have automorphism group
isomorphic to S3.

9.41. Let G be a group and g ∈ G. Define a map ig : G → G by ig(x) = gxg−1. Prove that ig defines an
automorphism of G.

Solution. Since ig(xy) = gxyg−1 = gxg−1gyg−1 = ig(x)ig(y), we see that ig is a homomorphism.
It is injective: if ig(x) = 1 then gxg−1 = 1 and thus x = 1. And it is surjective: if y ∈ G then
ig(g−1yg) = y. Thus it is an automorphism.

9.48 Prove that G×H is isomorphic to H ×G.

Solution. The map φ : G × H → H × G defined by φ(g, h) = (h, g) is an isomorphism. It is
surjective since, given (h, g) ∈ H × G, φ(g, h) = (h, g). It is injective since if φ(g, h) = φ(g′, h′) then
(h, g) = (h′, g′) and therefore h = h′ and g = g′. Finally, it is a homomorphism since φ((g, h)(g′, h′)) =
φ(gg′, hh′) = (hh′, gg′) = (h, g)(h′, g′) = φ(g, h)φ(g′, h′).

9.55 We classify groups of order 2p for an odd prime p.

(a) Assume G is a group of order 2p, where p is an odd prime. If a ∈ G, show that a must have order
1, 2, p, or 2p.

Solution. This is Lagrange’s theorem.

(b) Suppose that G has an element of order 2p. Prove that G is isomorphic to Z2p. Hence, G is cyclic.

Solution. Let g ∈ G have order 2p and define φ : Z2p → G by n 7→ gn. This is well defined
and surjective since g has order 2p, and thus also injective since G and Z2p have the same size.
Finally, it is a homomorphism since gm+n = gngm.

(c) Suppose that G does not contain an element of order 2p. Show that G must contain an element
of order p.

Solution. Suppose for contradiction that every element of G had order 1 or 2. Take two distinct
elements a, b of order 2. Then ab = ba (by 3.31 in a previous homework), and thus {1, a, b, ab}
forms a subgroup of G. But the order of G is not divisible by 4, contradicting Lagrange’s theorem.

(d) Suppose that G does not contain an element of order 2p. Show that G must contain an element
of order 2.

Solution. Now suppose that every element has order 1 or p. We first show that the following
relation is an equivalence relation on the set of non-identity elements of G: a ∼ b if there is an
n so that a = bn. It is reflexive (taking n = 1) and transitive (if b = cm then a = cmn). In the
equation a = bn we must have n relatively prime to p since a is not the identity. Taking m to
be the inverse of n modulo p and raising both sides of a = bn to the mth yields b = am, so it is
symmetric.

Each equivalence class under this relation has size p − 1. But there are 2p − 1 elements of G,
which is not divisible by p− 1. This provides the desired contradiction.

(e) Let P be a subgroup of G with order p and y ∈ G have order 2. Show that yP = Py.

Solution. Since P has index 2, this is problem 6.18.

(f) Suppose that G does not contain an element of order 2p and P = 〈z〉 is a subgroup of order p
generated by z. If y is an element of order 2, then yz = zky for some 2 ≤ k < p.
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Solution. Since yP = Py, we must have yz = zky for some k, so we need only show that k 6= 0, 1.
The case k = 0 is ruled out since z 6= 1. If k = 1, then z and y would commute, and the order of
yz would be 2p, contradicting the assumption.

(g) Suppose that G does not contain an element of order 2p. Prove that G is not abelian.

Solution. This follows immediately from the previous part, since y and z do not commute.

(h) Suppose that G does not contain an element of order 2p and P = 〈z〉 is a subgroup of order
p generated by z and y is an element of order 2. Show that we can list the elements of G as
{ziyj |0 ≤ i < p, 0 ≤ j < 2}.
Solution. The elements ziy0 for 0 ≤ i < p are an enumeration of P = 〈z〉, and ziy1 for 0 ≤ i < p
are then an enumeration of Py. These are the two cosets of P in G, giving all the elements.

(i) Suppose that G does not contain an element of order 2p and P = 〈z〉 is a subgroup of order
p generated by z and y is an element of order 2. Prove that the product (ziyj)(zrys) can be
expressed uniquely as zmyn for some non negative integers m,n. Thus, conclude that there is
only one possibility for a non-abelian group of order 2p, it must therefore be the one we have seen
already, the dihedral group.

Solution. In the relation yz = zky, the number of ys does not change, so we must have n ≡ j+s
(mod 2). Furthermore, when j = 0 we have zi+rys directly, so we need only consider the case
j = 1. Since we are interested in putting results in the form zmyn, the case s = 1 can be handled
from the case s = 0 by just multiplying on the right by y, so it suffices to consider ziyzr. It must
be of the form zmy for some m, but we need to show that there is only one possible value m can
take.

Consider the expression yzy. Since yz = zky, we must have yzy = zk. But then z = yyzyy =
yzky = (yzy)k = (zk)k = zk
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. Thus k2 ≡ 1 (mod 2), for which there are only two solutions:
k = 1 and k = −1. The case k = 1 corresponds to abelian G, which we have ruled out. Thus
there is only a single possible group: the dihedral group Dp.
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