Math 430 - Problem Set 4 Solutions

Due March 18, 2016

6.18. If $[G: H]=2$, prove that $g H=H g$.

Solution. Since there are only two left cosets of H, which are disjoint, and one of them is H itself, the left cosets are H and $G-H$. The same holds for the right cosets. Moreover, $g H=H$ iff $g \in H$ iff $H g=H$, and $g H=G-H$ iff $g \notin H$ iff $H g=G-H$. Thus $H g=g H$ for all $g \in G$.
9.8. Prove that \mathbb{Q} is not isomorphic to \mathbb{Z}.

Solution. Suppose that $\phi: \mathbb{Q} \rightarrow \mathbb{Z}$ is an isomorphism. Since ϕ is surjective, there is an $x \in \mathbb{Q}$ with $\phi(x)=1$. Then $2 \phi(x / 2)=\phi(x)=1$, but there is no integer n with $2 n=1$. Thus ϕ cannot exist.
9.12. Prove that S_{4} is not isomorphic to D_{12}.

Solution. Note that D_{12} has an element of order 12 (rotation by 30 degrees), while S_{4} has no element of order 12. Since orders of elements are preserved under isomorphisms, S_{4} cannot be isomorphic to D_{12}.
9.23. Prove or disprove the following assertion. Let G, H, and K be groups. If $G \times K \cong H \times K$, then $G \cong H$. Solution. Take $K=\prod_{i=1}^{\infty} \mathbb{Z}$ and $G=\mathbb{Z}$ and $H=\mathbb{Z} \times \mathbb{Z}$. Then

$$
G \times K \cong K \cong H \times K
$$

but $G \not \approx H$. Thus the assertion is false.
Note that the assertion is true if K is finite, but it's difficult to show. Many people tried to used an isomorphism $\phi: G \times K \rightarrow H \times K$ to construct an isomorphism $G \rightarrow H$. The difficulty is that ϕ does not necessarily map $G \times\{1\}$ to $H \times\{1\}$ (and if it does, it may not be surjective).
9.29. Show that S_{n} is isomorphic to a subgroup of A_{n+2}.

Solution. Let $\tau=(n+1, n+2) \in S_{n+2}$. Identifying S_{n} with the subgroup of S_{n+2} that fix $n+1$ and $n+2$, we define

$$
\begin{aligned}
\phi: S_{n} & \rightarrow A_{n+2} \\
\sigma & \mapsto \begin{cases}\sigma & \text { if } \sigma \text { even } \\
\sigma \tau & \text { if } \sigma \text { odd }\end{cases}
\end{aligned}
$$

We check that ϕ is an injective homomorphism. Note that $\sigma \tau=\tau \sigma$ for all $\sigma \in S_{n}$. Then

$$
\phi\left(\sigma_{1} \sigma_{2}\right)= \begin{cases}\sigma_{1} \sigma_{2}=\phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right) & \text { if } \sigma_{1} \text { even, } \sigma_{2} \text { even } \\ \sigma_{1} \sigma_{2} \tau=\phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right) & \text { if } \sigma_{1} \text { even, } \sigma_{2} \text { odd } \\ \sigma_{1} \tau \sigma_{2}=\phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right) & \text { if } \sigma_{1} \text { odd, } \sigma_{2} \text { even } \\ \sigma_{1} \sigma_{2} \tau^{2}=\phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right) & \text { if } \sigma_{1} \text { odd, } \sigma_{2} \text { odd }\end{cases}
$$

Thus ϕ is a homomorphism. Moreover, since $\sigma \tau$ is never 1 and ϕ is the identity on A_{n}, ϕ is injective. Thus it defines an isomorphism with its image, a subgroup of A_{n+2}.
9.40. Find two nonisomorphic groups G and H such that $\operatorname{Aut}(G) \cong \operatorname{Aut}(H)$.

Solution. The simplest example is the trivial group and \mathbb{Z}_{2}, both of which have trivial automorphism group. Other examples include $G=\mathbb{Z}_{3}$ and $H=\mathbb{Z}_{6}$ (both of which have automorphism group isomorphic to \mathbb{Z}_{2}), $G=\mathbb{Z}_{7}$ and $H=\mathbb{Z}_{18}$ (both of which have isomorphism group isomorphic to \mathbb{Z}_{6}). A more interesting example is $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $H=S_{3}$, both of which have automorphism group isomorphic to S_{3}.
9.41. Let G be a group and $g \in G$. Define a map $i_{g}: G \rightarrow G$ by $i_{g}(x)=g x g^{-1}$. Prove that i_{g} defines an automorphism of G.

Solution. Since $i_{g}(x y)=g x y g^{-1}=g x g^{-1} g y g^{-1}=i_{g}(x) i_{g}(y)$, we see that i_{g} is a homomorphism. It is injective: if $i_{g}(x)=1$ then $g x g^{-1}=1$ and thus $x=1$. And it is surjective: if $y \in G$ then $i_{g}\left(g^{-1} y g\right)=y$. Thus it is an automorphism.
9.48 Prove that $G \times H$ is isomorphic to $H \times G$.

Solution. The map $\phi: G \times H \rightarrow H \times G$ defined by $\phi(g, h)=(h, g)$ is an isomorphism. It is surjective since, given $(h, g) \in H \times G, \phi(g, h)=(h, g)$. It is injective since if $\phi(g, h)=\phi\left(g^{\prime}, h^{\prime}\right)$ then $(h, g)=\left(h^{\prime}, g^{\prime}\right)$ and therefore $h=h^{\prime}$ and $g=g^{\prime}$. Finally, it is a homomorphism since $\phi\left((g, h)\left(g^{\prime}, h^{\prime}\right)\right)=$ $\phi\left(g g^{\prime}, h h^{\prime}\right)=\left(h h^{\prime}, g g^{\prime}\right)=(h, g)\left(h^{\prime}, g^{\prime}\right)=\phi(g, h) \phi\left(g^{\prime}, h^{\prime}\right)$.
9.55 We classify groups of order $2 p$ for an odd prime p.
(a) Assume G is a group of order $2 p$, where p is an odd prime. If $a \in G$, show that a must have order $1,2, p$ or $2 p$.
Solution. This is Lagrange's theorem.
(b) Suppose that G has an element of order $2 p$. Prove that G is isomorphic to $\mathbb{Z}_{2 p}$. Hence, G is cyclic.

Solution. Let $g \in G$ have order $2 p$ and define $\phi: \mathbb{Z}_{2 p} \rightarrow G$ by $n \mapsto g^{n}$. This is well defined and surjective since g has order $2 p$, and thus also injective since G and $\mathbb{Z}_{2 p}$ have the same size. Finally, it is a homomorphism since $g^{m+n}=g^{n} g^{m}$.
(c) Suppose that G does not contain an element of order $2 p$. Show that G must contain an element of order p.
Solution. Suppose for contradiction that every element of G had order 1 or 2 . Take two distinct elements a, b of order 2 . Then $a b=b a$ (by 3.31 in a previous homework), and thus $\{1, a, b, a b\}$ forms a subgroup of G. But the order of G is not divisible by 4, contradicting Lagrange's theorem.
(d) Suppose that G does not contain an element of order $2 p$. Show that G must contain an element of order 2 .
Solution. Now suppose that every element has order 1 or p. We first show that the following relation is an equivalence relation on the set of non-identity elements of $G: a \sim b$ if there is an n so that $a=b^{n}$. It is reflexive (taking $n=1$) and transitive (if $b=c^{m}$ then $a=c^{m n}$). In the equation $a=b^{n}$ we must have n relatively prime to p since a is not the identity. Taking m to be the inverse of n modulo p and raising both sides of $a=b^{n}$ to the m th yields $b=a^{m}$, so it is symmetric.
Each equivalence class under this relation has size $p-1$. But there are $2 p-1$ elements of G, which is not divisible by $p-1$. This provides the desired contradiction.
(e) Let P be a subgroup of G with order p and $y \in G$ have order 2 . Show that $y P=P y$.

Solution. Since P has index 2, this is problem 6.18.
(f) Suppose that G does not contain an element of order $2 p$ and $P=\langle z\rangle$ is a subgroup of order p generated by z. If y is an element of order 2 , then $y z=z^{k} y$ for some $2 \leq k<p$.

Solution. Since $y P=P y$, we must have $y z=z^{k} y$ for some k, so we need only show that $k \neq 0,1$. The case $k=0$ is ruled out since $z \neq 1$. If $k=1$, then z and y would commute, and the order of $y z$ would be $2 p$, contradicting the assumption.
(g) Suppose that G does not contain an element of order $2 p$. Prove that G is not abelian.

Solution. This follows immediately from the previous part, since y and z do not commute.
(h) Suppose that G does not contain an element of order $2 p$ and $P=\langle z\rangle$ is a subgroup of order p generated by z and y is an element of order 2 . Show that we can list the elements of G as $\left\{z^{i} y^{j} \mid 0 \leq i<p, 0 \leq j<2\right\}$.
Solution. The elements $z^{i} y^{0}$ for $0 \leq i<p$ are an enumeration of $P=\langle z\rangle$, and $z^{i} y^{1}$ for $0 \leq i<p$ are then an enumeration of $P y$. These are the two cosets of P in G, giving all the elements.
(i) Suppose that G does not contain an element of order $2 p$ and $P=\langle z\rangle$ is a subgroup of order p generated by z and y is an element of order 2. Prove that the product $\left(z^{i} y^{j}\right)\left(z^{r} y^{s}\right)$ can be expressed uniquely as $z^{m} y^{n}$ for some non negative integers m, n. Thus, conclude that there is only one possibility for a non-abelian group of order $2 p$, it must therefore be the one we have seen already, the dihedral group.
Solution. In the relation $y z=z^{k} y$, the number of y s does not change, so we must have $n \equiv j+s$ $(\bmod 2)$. Furthermore, when $j=0$ we have $z^{i+r} y^{s}$ directly, so we need only consider the case $j=1$. Since we are interested in putting results in the form $z^{m} y^{n}$, the case $s=1$ can be handled from the case $s=0$ by just multiplying on the right by y, so it suffices to consider $z^{i} y z^{r}$. It must be of the form $z^{m} y$ for some m, but we need to show that there is only one possible value m can take.
Consider the expression $y z y$. Since $y z=z^{k} y$, we must have $y z y=z^{k}$. But then $z=y y z y y=$ $y z^{k} y=(y z y)^{k}=\left(z^{k}\right)^{k}=z^{k^{2}}$. Thus $k^{2} \equiv 1(\bmod 2)$, for which there are only two solutions: $k=1$ and $k=-1$. The case $k=1$ corresponds to abelian G, which we have ruled out. Thus there is only a single possible group: the dihedral group D_{p}.

