
Math 430 – Problem Set 3 Solutions

4.14. Let A =
(

0 1
−1 0

)
and B =

(
0 −1
1 −1

)
be elements in GL2(R). Show that A and B have finite orders but

AB does not.

Solution.

• A2 =
(−1 0

0 −1

)
, A3 =

(
0 −1
1 0

)
, and A4 = ( 1 0

0 1 ) so A has order 4.

• B2 =
(−1 1
−1 0

)
and B3 = ( 1 0

0 1 ) so B has order 3.

• I claim that (AB)n =
(
1 −n
0 1

)
. AB =

(
1 −1
0 1

)
, which is the base case, and

(
1 −1
0 1

)
·
(
1 −n
0 1

)
=(

1 −n−1
0 1

)
, which is the induction step. Thus (AB)n is never the identity matrix for n > 0 and

AB has infinite order.

4.15(c). Evaluate (5− 4i)(7 + 2i).

Solution.
(5− 4i)(7 + 2i) = 35 + 10i− 18i+ 8 = 43− 18i.

4.15(f). Evaluate (1 + i) + (1 + i).

Solution.
(1 + i) + (1 + i) = 1 + i+ 1− i = 2

4.16(c). Convert 3 cis(π) to the form a+ bi.

Solution.
3 cis(π) = 3(cos(π) + i sin(π) = −3

4.17(c). Change 2 + 2i to polar representation.

Solution. Using the formulas r =
√
a2 + b2 and θ = tan−1(b/a) (which holds since 2 + 2i is in the

first quadrant), we get r =
√

8 and θ = tan−1(1) so 2 + 2i = 2
√

2 cis(π/4).

4.27. If g and h have orders 15 and 16 respectively in a group G, what is the order of 〈g〉 ∩ 〈h〉?

Solution. The intersection 〈g〉 ∩ 〈h〉 is a subgroup of both 〈g〉 and 〈h〉. By Lagrange’s theorem, its
order must therefore divide both 15 and 16. Since gcd(15, 16) = 1, we get that |〈g〉 ∩ 〈h〉| = 1.

5.2(c). Compute (143)(23)(24).

Solution.
(143)(23)(24) = (14)(23)

5.2(i). Compute (123)(45)(1254)−2.

Solution. Since (1254) has order 4, (1254)−2 = (1254)2 = (15)(24). Thus

(123)(45)(1254)−2 = (123)(45)(15)(24) = (143)(25)
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5.2(n). Compute (12537)−1.

Solution. We reverse the order of the cycle, yielding

(12537)−1 = (73521) = (17352).

5.7. Find all possible orders of elements in S7 and A7.

Solution. Orders of permutations are determined by least common multiple of the lengths of the
cycles in their decomposition into disjoint cycles, which correspond to partitions of 7.

Representative Cycle Order Sign
() 1 Even
(12) 2 Odd
(123) 3 Even
(1234) 4 Odd
(12345) 5 Even
(123456) 6 Odd
(1234567) 7 Even
(12)(34) 2 Even
(12)(345) 6 Odd
(12)(3456) 4 Even
(12)(34567) 10 Odd
(123)(456) 3 Even
(123)(4567) 12 Odd
(12)(34)(56) 2 Odd
(12)(34)(567) 6 Even

Therefore the orders of elements in S7 are 1, 2, 3, 4, 5, 6, 7, 10, 12 and the orders of elements in A7 are
1, 2, 3, 4, 5, 6, 7.

5.16. Find the group of rigid motions of a tetrahedron. Show that this is the same group as A4.

Solution. Let G be the group of rigid motions. Label the vertices of the tetrahedron 1, 2, 3, 4. A
rotation is determined by where it sends vertex 1 (four possibilities) and the orientation of the edges
emanating from that vertex (three possibilities). So there are 12 elements in G. Define a map φ
from G to the symmetric group on the vertices by mapping a given rotation to the permutation it
induces on the vertices. There are eight rotations of order 3 that fix a single vertex and rotate around
the axis connecting that vertex to the center of the opposite face. The images of these rotations
under φ are {(123), (132), (124), (142), (134), (143), (234), (243)}. There are three rotations of order
2 around the axis between midpoints of opposite edges. The images of these rotations under φ are
{(12)(34), (13)(24), (14)(23)}. Together with the identity, this gives all twelve rotations. The image of
φ is A4, it is injective, and it preserves the group operation (since the operation is function composition
in both cases), so φ gives an isomorphism between the group of rigid motions of the tetrahedron and
A4.

5.23. If σ is a cycle of odd length, prove that σ2 is also a cycle.

Solution. Write σ = (α0, . . . , αm−1) in cycle notation. Certainly σ2 doesn’t move any elements of
{1, . . . , n} other than the αi. Since (σ2)i(α0) = α2i mod m are distinct for i = 0, . . . ,m− 1 (because 2
is relatively prime to m), σ2 is an m-cycle.

5.26. Prove that any element can be written as a finite product of the following permutations.

(a) (12), (13), . . . , (1n)
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Solution. Every element of Sn can be written as a product of transpositions, and any transpo-
sition (ab) can be written as (1a)(1b)(1a). Thus (12), (13), . . . , (1n) generate Sn.

(b) (12), (23), . . . , (n− 1, n)

Solution. We prove by induction that (1k) can be written in terms of (12), (23), . . . , (n−1, n) for
k = 2, 3, . . . , n. The base case is clear: (12) = (12). The induction step follows from the identity
(1, k + 1) = (1k)(k, k + 1)(1k). By part (a), the set (12), (13), . . . , (1n) generates Sn, and thus
(12), (23), . . . , (n− 1, n) does as well.

(c) (12), (12 . . . n)

Solution. We prove by induction that (k − 1, k) can be written in terms of (12), (12 . . . n) for
k = 2, 3, . . . , n. The base case is again clear: (12) = (12). The induction step follows from the
identity (k, k + 1) = (12 . . . n)(k − 1, k)(n . . . 21). By part (b), the set (12), (23), . . . , (n − 1, n)
generates Sn, and thus (12), (12 . . . n) does as well.

5.30. Let τ = (a1, a2, . . . , ak) be a cycle of length k.

(a) Prove that if σ is any permutation, then

στσ−1 = (σ(a1), σ(a2), . . . , σ(ak))

is a cycle of length k.

Solution. Let L = σ · τ and R = (σ(a1), σ(a2), . . . , σ(ak)) · σ. We show that L = R by proving
that L(x) = R(x) for x = 1, 2, . . . , n. There are two cases: x = ai for some i and x 6= ai for any
i. If x = ai then

L(x) = στ(ai) = σ(ai+1),

where we set ak+1 = a1 by convention. Since

R(x) = (σ(a1), σ(a2), . . . , σ(ak))(σ(ai)) = σ(ai+1),

L and R have the same value on x.

If x 6= ai then x is fixed by τ and thus L(x) = σ(x). Similarly, σ(x) is fixed by the cycle
(σ(a1), σ(a2), . . . , σ(ak)) so R(x) = σ(x).

Since L = R, we also have Lσ−1 = Rσ−1.

(b) Let µ be a cycle of length k. Prove that there is a permutation σ such that στσ−1 = µ.

Solution. Let µ = (b1, b2, . . . , bk). For i = 1, . . . , k define σ(ai) = bi. Since the sets X =
{1, . . . , n} − {a1, . . . , ak} and Y = {1, . . . , n} − {b1, . . . , bk} both have cardinality n − k, there
exists a bijection φ between them. Set σ(x) = φ(x) for x 6= ai. Then σ ∈ Sn and, by part (a),
στσ−1 = µ.

6.5(f). List the left and right cosets of D4 in S4.

Solution. Label the vertices of the square 1, 2, 3, 4 in clockwise order. Then the elements of D4, as a
subgroup of S4, are

{(), (1234), (13)(24), (1432), (12)(34), (14)(23), (13), (24)},

and this set is both a left and right coset.

Since (12) 6∈ D4,

(12)D4 = {(12), (234), (1324), (143), (34), (1423), (132), (124)}
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is another left coset of D4. Moreover, since g1H = g2H ⇔ Hg−1
1 = Hg−1

2 , the set consisting of the
inverses of these elements is a right coset of D4:

D4(12) = {(12), (243), (1423), (134), (34), (1324), (123), (142)}

Finally, we can construct the remaining left coset by collecting the remaining elements,

(14)D4 = {(14), (23), (123), (142), (134), (243), (1243), (1342)},

and the remaining right coset likewise:

D4(14) = {(14), (23), (132), (124), (143), (234), (1342), (1243)}.

6.15. Show that any two permutations α, β ∈ Sn have the same cycle structure if and only if there exists a
permutation γ such that β = γαγ−1.

Solution. Suppose first that β = γαγ−1, and let α = α1α2 . . . αk be a decomposition of α into disjoint
cycles. Then β = (γα1γ

−1)(γα2γ
−1) . . . (γαkγ

−1). By 5.30(a), (γαiγ
−1) is a cycle of the same length

as αi, and if i 6= j then (γαiγ
−1) is disjoint from (γαjγ

−1). Thus the cycle structures of α and β are
the same.

Conversely, suppose that α and β have the same cycle structure. Then we get write α = α1α2 . . . αk

and β = β1β2 . . . βk, with αi = (a1, . . . , ani
) and βi = (b1, . . . , bni

). Let X be the complement of the
ai,j in {1, . . . , n} and let Y be the complement of the bi,j . Then the cardinality of X is the same as
the cardinality of Y , and we may choose a bijection γ between them. Extending γ to all of {1, . . . , n}
by setting γ(ai,j) = bi,j yields a permutation, and by 5.30(a), β = γαγ−1.
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