Math 430 - Problem Set 3 Solutions

4.14. Let $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$ be elements in $\mathrm{GL}_{2}(\mathbb{R})$. Show that A and B have finite orders but $A B$ does not.

Solution.

- $A^{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right), A^{3}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, and $A^{4}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ so A has order 4 .
- $B^{2}=\left(\begin{array}{cc}-1 & 1 \\ -1 & 0\end{array}\right)$ and $B^{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ so B has order 3 .
- I claim that $(A B)^{n}=\left(\begin{array}{cc}1 & -n \\ 0 & 1\end{array}\right) . ~ A B=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$, which is the base case, and $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right) \cdot\left(\begin{array}{cc}1 & -n \\ 0 & 1\end{array}\right)=$ $\left(\begin{array}{cc}1 & -n-1 \\ 0 & 1\end{array}\right)$, which is the induction step. Thus $(A B)^{n}$ is never the identity matrix for $n>0$ and $A B$ has infinite order.
4.15(c). Evaluate $(5-4 i)(7+2 i)$.

Solution.

$$
(5-4 i)(7+2 i)=35+10 i-18 i+8=43-18 i
$$

4.15(f). Evaluate $(1+i)+\overline{(1+i)}$.

Solution.

$$
(1+i)+\overline{(1+i)}=1+i+1-i=2
$$

4.16(c). Convert $3 \operatorname{cis}(\pi)$ to the form $a+b i$.

Solution.

$$
3 \operatorname{cis}(\pi)=3(\cos (\pi)+i \sin (\pi)=-3
$$

4.17(c). Change $2+2 i$ to polar representation.

Solution. Using the formulas $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\tan ^{-1}(b / a)$ (which holds since $2+2 i$ is in the first quadrant), we get $r=\sqrt{8}$ and $\theta=\tan ^{-1}(1)$ so $2+2 i=2 \sqrt{2} \operatorname{cis}(\pi / 4)$.
4.27. If g and h have orders 15 and 16 respectively in a group G, what is the order of $\langle g\rangle \cap\langle h\rangle$?

Solution. The intersection $\langle g\rangle \cap\langle h\rangle$ is a subgroup of both $\langle g\rangle$ and $\langle h\rangle$. By Lagrange's theorem, its order must therefore divide both 15 and 16. Since $\operatorname{gcd}(15,16)=1$, we get that $|\langle g\rangle \cap\langle h\rangle|=1$.
5.2(c). Compute (143)(23)(24).

Solution.

$$
(143)(23)(24)=(14)(23)
$$

5.2(i). Compute (123)(45)(1254) ${ }^{-2}$.

Solution. Since (1254) has order $4,(1254)^{-2}=(1254)^{2}=(15)(24)$. Thus

$$
(123)(45)(1254)^{-2}=(123)(45)(15)(24)=(143)(25)
$$

$5.2(\mathrm{n})$. Compute $(12537)^{-1}$.
Solution. We reverse the order of the cycle, yielding

$$
(12537)^{-1}=(73521)=(17352)
$$

5.7. Find all possible orders of elements in S_{7} and A_{7}.

Solution. Orders of permutations are determined by least common multiple of the lengths of the cycles in their decomposition into disjoint cycles, which correspond to partitions of 7 .

Representative Cycle	Order	Sign
()	1	Even
(12)	2	Odd
(123)	3	Even
(1234)	4	Odd
(12345)	5	Even
(123456)	6	Odd
(1234567)	7	Even
$(12)(34)$	2	Even
$(12)(345)$	6	Odd
$(12)(3456)$	4	Even
$(12)(34567)$	10	Odd
$(123)(456)$	3	Even
$(123)(4567)$	12	Odd
$(12)(34)(56)$	2	Odd
$(12)(34)(567)$	6	Even

Therefore the orders of elements in S_{7} are $1,2,3,4,5,6,7,10,12$ and the orders of elements in A_{7} are $1,2,3,4,5,6,7$.
5.16. Find the group of rigid motions of a tetrahedron. Show that this is the same group as A_{4}.

Solution. Let G be the group of rigid motions. Label the vertices of the tetrahedron $1,2,3,4$. A rotation is determined by where it sends vertex 1 (four possibilities) and the orientation of the edges emanating from that vertex (three possibilities). So there are 12 elements in G. Define a map ϕ from G to the symmetric group on the vertices by mapping a given rotation to the permutation it induces on the vertices. There are eight rotations of order 3 that fix a single vertex and rotate around the axis connecting that vertex to the center of the opposite face. The images of these rotations under ϕ are $\{(123),(132),(124),(142),(134),(143),(234),(243)\}$. There are three rotations of order 2 around the axis between midpoints of opposite edges. The images of these rotations under ϕ are $\{(12)(34),(13)(24),(14)(23)\}$. Together with the identity, this gives all twelve rotations. The image of ϕ is A_{4}, it is injective, and it preserves the group operation (since the operation is function composition in both cases), so ϕ gives an isomorphism between the group of rigid motions of the tetrahedron and A_{4}.
5.23. If σ is a cycle of odd length, prove that σ^{2} is also a cycle.

Solution. Write $\sigma=\left(\alpha_{0}, \ldots, \alpha_{m-1}\right)$ in cycle notation. Certainly σ^{2} doesn't move any elements of $\{1, \ldots, n\}$ other than the α_{i}. Since $\left(\sigma^{2}\right)^{i}\left(\alpha_{0}\right)=\alpha_{2 i} \bmod m$ are distinct for $i=0, \ldots, m-1$ (because 2 is relatively prime to m), σ^{2} is an m-cycle.
5.26. Prove that any element can be written as a finite product of the following permutations.
(a) $(12),(13), \ldots,(1 n)$

Solution. Every element of S_{n} can be written as a product of transpositions, and any transposition $(a b)$ can be written as $(1 a)(1 b)(1 a)$. Thus $(12),(13), \ldots,(1 n)$ generate S_{n}.
(b) $(12),(23), \ldots,(n-1, n)$

Solution. We prove by induction that $(1 k)$ can be written in terms of $(12),(23), \ldots,(n-1, n)$ for $k=2,3, \ldots, n$. The base case is clear: $(12)=(12)$. The induction step follows from the identity $(1, k+1)=(1 k)(k, k+1)(1 k)$. By part (a), the set (12), (13), .., (1n) generates S_{n}, and thus $(12),(23), \ldots,(n-1, n)$ does as well.
(c) $(12),(12 \ldots n)$

Solution. We prove by induction that $(k-1, k)$ can be written in terms of (12), (12 $\ldots n)$ for $k=2,3, \ldots, n$. The base case is again clear: $(12)=(12)$. The induction step follows from the identity $(k, k+1)=(12 \ldots n)(k-1, k)(n \ldots 21)$. By part (b), the set $(12),(23), \ldots,(n-1, n)$ generates S_{n}, and thus (12), (12 $\left.\ldots n\right)$ does as well.
5.30. Let $\tau=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a cycle of length k.
(a) Prove that if σ is any permutation, then

$$
\sigma \tau \sigma^{-1}=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right)
$$

is a cycle of length k.
Solution. Let $L=\sigma \cdot \tau$ and $R=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right) \cdot \sigma$. We show that $L=R$ by proving that $L(x)=R(x)$ for $x=1,2, \ldots, n$. There are two cases: $x=a_{i}$ for some i and $x \neq a_{i}$ for any i. If $x=a_{i}$ then

$$
L(x)=\sigma \tau\left(a_{i}\right)=\sigma\left(a_{i+1}\right)
$$

where we set $a_{k+1}=a_{1}$ by convention. Since

$$
R(x)=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right)\left(\sigma\left(a_{i}\right)\right)=\sigma\left(a_{i+1}\right)
$$

L and R have the same value on x.
If $x \neq a_{i}$ then x is fixed by τ and thus $L(x)=\sigma(x)$. Similarly, $\sigma(x)$ is fixed by the cycle $\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right)$ so $R(x)=\sigma(x)$.
Since $L=R$, we also have $L \sigma^{-1}=R \sigma^{-1}$.
(b) Let μ be a cycle of length k. Prove that there is a permutation σ such that $\sigma \tau \sigma^{-1}=\mu$.

Solution. Let $\mu=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$. For $i=1, \ldots, k$ define $\sigma\left(a_{i}\right)=b_{i}$. Since the sets $X=$ $\{1, \ldots, n\}-\left\{a_{1}, \ldots, a_{k}\right\}$ and $Y=\{1, \ldots, n\}-\left\{b_{1}, \ldots, b_{k}\right\}$ both have cardinality $n-k$, there exists a bijection ϕ between them. Set $\sigma(x)=\phi(x)$ for $x \neq a_{i}$. Then $\sigma \in S_{n}$ and, by part (a), $\sigma \tau \sigma^{-1}=\mu$.
6.5(f). List the left and right cosets of D_{4} in S_{4}.

Solution. Label the vertices of the square $1,2,3,4$ in clockwise order. Then the elements of D_{4}, as a subgroup of S_{4}, are

$$
\{(),(1234),(13)(24),(1432),(12)(34),(14)(23),(13),(24)\}
$$

and this set is both a left and right coset.
Since (12) $\notin D_{4}$,

$$
(12) D_{4}=\{(12),(234),(1324),(143),(34),(1423),(132),(124)\}
$$

is another left coset of D_{4}. Moreover, since $g_{1} H=g_{2} H \Leftrightarrow H g_{1}^{-1}=H g_{2}^{-1}$, the set consisting of the inverses of these elements is a right coset of D_{4} :

$$
D_{4}(12)=\{(12),(243),(1423),(134),(34),(1324),(123),(142)\}
$$

Finally, we can construct the remaining left coset by collecting the remaining elements,

$$
(14) D_{4}=\{(14),(23),(123),(142),(134),(243),(1243),(1342)\}
$$

and the remaining right coset likewise:

$$
D_{4}(14)=\{(14),(23),(132),(124),(143),(234),(1342),(1243)\}
$$

6.15. Show that any two permutations $\alpha, \beta \in S_{n}$ have the same cycle structure if and only if there exists a permutation γ such that $\beta=\gamma \alpha \gamma^{-1}$.

Solution. Suppose first that $\beta=\gamma \alpha \gamma^{-1}$, and let $\alpha=\alpha_{1} \alpha_{2} \ldots \alpha_{k}$ be a decomposition of α into disjoint cycles. Then $\beta=\left(\gamma \alpha_{1} \gamma^{-1}\right)\left(\gamma \alpha_{2} \gamma^{-1}\right) \ldots\left(\gamma \alpha_{k} \gamma^{-1}\right)$. By 5.30(a), $\left(\gamma \alpha_{i} \gamma^{-1}\right)$ is a cycle of the same length as α_{i}, and if $i \neq j$ then $\left(\gamma \alpha_{i} \gamma^{-1}\right)$ is disjoint from $\left(\gamma \alpha_{j} \gamma^{-1}\right)$. Thus the cycle structures of α and β are the same.

Conversely, suppose that α and β have the same cycle structure. Then we get write $\alpha=\alpha_{1} \alpha_{2} \ldots \alpha_{k}$ and $\beta=\beta_{1} \beta_{2} \ldots \beta_{k}$, with $\alpha_{i}=\left(a_{1}, \ldots, a_{n_{i}}\right)$ and $\beta_{i}=\left(b_{1}, \ldots, b_{n_{i}}\right)$. Let X be the complement of the $a_{i, j}$ in $\{1, \ldots, n\}$ and let Y be the complement of the $b_{i, j}$. Then the cardinality of X is the same as the cardinality of Y, and we may choose a bijection γ between them. Extending γ to all of $\{1, \ldots, n\}$ by setting $\gamma\left(a_{i, j}\right)=b_{i, j}$ yields a permutation, and by $5.30(\mathrm{a}), \beta=\gamma \alpha \gamma^{-1}$.

