2.15(b).

2.30.

3.1(f).

3.7.

Math 430 — Problem Set 2 Solutions

Due September 21, 2017

Find d = gcd(234, 165) and integers r and s with d = 234r 4 165s.

Solution. Running the Euclidean algorithm,

234 =1-165+69
165 =269 + 27

69=2-27+15
27=1-15+12
15=1-12+3
12=4-3,
so the greatest common divisor is 3. Now
3=15-12
=15— (27— 15)
=2-15-27
=2-(69-2-27)—27
=2-69—5-27
=2-69-5-(165—-2-69)
=12-69—5-165

=12-(234—165) —5- 165
=12-234 — 17 165,

so we may take r = 12 and s = —17.

Prove that there are an infinite number of primes of the form 4n — 1.

Solution. Suppose, for contradiction, that there are finitely many: py,...,pg. Let N =4py...pp — 1.
Since N differers from a multiple of every p; by 1, it cannot be divisible by any p; on the list. But
it also cannot be divisible only by primes of the form 4n + 1 since the product of such primes will be
congruent to 1 modulo 4, while N = —1 (mod 4). Moreover, N is odd so it is not divisible by any
even prime. Thus N must be divisible by at least one prime of the form 4n — 1 that does not show up
on the initial list. This contradiction proves the result. O

Find all z € Z satisfying 3z = 1 (mod 6)
Solution. The multiples of 3 modulo 6 are 0 and 3, so there are no solutions to this equation.

Let S = R\{—1} and define a binary operation on S by a *b = a + b+ ab. Prove that (S, %) is an
abelian group.



3.17.

3.22.

Solution.

e We first show that the operation gives a function S x .S — S. Certainly a*xb € R, so we just need
to show that if a,b € S then axb # —1. If axb= —1then 1+a+b+ab=0,or (1+a)(1+b) =0.
This is impossible since a # —1 and b # —1.

e We show that 0 is the identity for S: for any a € S, we have Oxa = 0+a+0-a =a=a+0+4+a-0 =
ax 0.

e We show that the operation is associative:

ax(bxc)=ax*(b+c+bec)
=a+b+c+bc+alb+c+be)
=a+b+c+bc+ ab+ ac+ abc
=a+b+ab+c+ (a+b+ab)c
=(a+b+ab)xc

= (axb)x*c.
e We show that if a € S then =% € S is its inverse. Note that 5% € R since a # —1. Moreover, if
1172 = —1 then —a = —1 — a, which is impossible. Thus 1;—‘2 € S. We then compute
L0 . —a n —a? 0
a = Qa —_— =
1+4+a 14a 1+4a
- e S
*a = a =
1+4+a 14+a 14+a

e Finally, note that a * b= a + b+ ab = b * a since addition and multiplication are commutative in
R.

Thus (5, ) is an abelian group. O

Give an example of three different groups with eight elements. Why are the groups different?

Solution. There are five groups of order eight, up to isomorphism: you can select any three. They
are

° 7s,

o 7y X Lo,

® o X Lo X s,

[ ] D4,

o ()s.
The first three are abelian, and thus different from the last two. The first three are distinguished from

each other by the largest order of an element (8 vs 4 vs 2). To see that D4 and Qg are not isomorphic,
note that Dy has four elements of order 2 (the four reflections) while Qg only has one (—1).

Show that addition and multiplication mod n are well defined operations. That is, show that the
operations do not depend on the choice of the representative from the equivalence classes mod n.



Solution. Suppose that a = b (mod n) and ¢ = d (mod n). Then there are integers r, s with a = b+rn
and ¢ = d + sn. We find that

at+c=b+rn+d+ sn
=b+d+ (r+s)n,

so a+c=b+d (mod n) and thus addition is well defined. Similarly,
ac = (b+rn)(c+ sn)

= be + bsn + crn + rsn?

=bc+ (bs+ cr + rsn)n,

so ac = bd (mod n) and thus multiplication is well defined. O

3.25. Let a and b be elements in a group G. Prove that ab"a™! = (aba=!')" for n € Z.
Solution.

e For n = 0, this is the statement that a-1-a~1 = (aba™1)?, which is true since both sides are the
identity.
e For n > 0 we prove the statement by induction. Suppose that ab”~ta=! = (aba=!)"~1. Then
(aba™1)"™ = (aba™1)" " (aba™1)
=ab" ta tabat
=ab"a .
e Finally, for n < 0, let m = —n. Using the statement for m > 0, we have
(aba™ 1™ = ((aba™ 1)~ 1™
— (abflafl)m
— a(b—l)ma—l

= ab"a !

3.31. Show that if a® = e for all elements @ in a group G then G must be abelian.

Solution. Suppose a,b € G. Then e = (ab)(ab) and e = (ab)(ba) since b> = e and a* = e. Since
inverses are unique, ab = ba. Thus G is abelian. O

3.33. Let G be a group and suppose that (ab)? = a?b? for all @ and b in G. Prove that G is an abelian group.

Solution. For all a,b € G we have
abab = aabd.

Multiplying on the left by a~! and on the right by b~! yields ba = ab, so G is abelian. O

G={() )}

where 6 € R. Prove that G is a subgroup of SLy(R).

3.40. Let

Solution.



Since det(‘;fj((gg ;zlsr(lg)’)) = cos?(6) +sin®(#) = 1, we get that G C SLy(R).

Setting 6 = 0 shows that G contains the identity.

(cos(@) — sin(6) ) . (cos(ft?) — sin(—0) ) _ ( 1
sin(0) cos(0) sin(—60) cos(—0) 0
G is closed under taking inverses.

e We have

(cos(@) — sin(6) ) . < cos(¢) — sin(y) ) _ (cos(@) cos(p)—sin(0) sin(p) — sin(0) cos(p)—cos(0) sin(p) )
sin(0) cos(0) sin(p) cos(yp) sin(0) cos(p)+cos(0) sin(p) cos(0) cos(p)—sin(0) sin(p)

e Since

o

)7

o (cos(GJer) — sin(6+¢) )
— \ sin(0+¢) cos(0+¢) |°

Thus G is closed under taking products, and thus G is a subgroup of SLy(R). O

3.46. Prove or disprove: if H and K are subgroups of a group G, then H U K is a subgroup of G.

Solution. This is only true if H C K or K C H. It suffices to give a counterexample: if G = Zg,
H =1{0,2,4} and K = {0,3} then H U K = {0,2,3,4} is not a subgroup since it’s not closed under
addition.

3.52. Prove or disprove: every proper subgroup of a nonabelian group is nonabelian.

Solution. False. For example, {£1,+i} C Qs is abelian but Qg is not.

3.54. Let H be a subgroup of G. If g € G, show that gHg™! = {g~thg: h € H} is also a subgroup of G.
Solution.

e Note that gHg ! is a subset of G since G is closed under multiplication.

e Sincel € H,wehave 1l =¢g-1-g~t € gHg!.

If ghg=t, gh'g~' € gHg™! then ghg~'gh'g~! = ghh'g~! € gHg™ ! since H is closed under multi-
plication.

o If ghg=! € gHg™ ! then (ghg™')™' = gh~tg~! € gHg ! since H is closed under taking inverses.



