Math 430 - Problem Set 2 Solutions

Due September 21, 2017

2.15(b). Find $d=\operatorname{gcd}(234,165)$ and integers r and s with $d=234 r+165 s$.

Solution. Running the Euclidean algorithm,

$$
\begin{aligned}
234 & =1 \cdot 165+69 \\
165 & =2 \cdot 69+27 \\
69 & =2 \cdot 27+15 \\
27 & =1 \cdot 15+12 \\
15 & =1 \cdot 12+3 \\
12 & =4 \cdot 3,
\end{aligned}
$$

so the greatest common divisor is 3 . Now

$$
\begin{aligned}
3 & =15-12 \\
& =15-(27-15) \\
& =2 \cdot 15-27 \\
& =2 \cdot(69-2 \cdot 27)-27 \\
& =2 \cdot 69-5 \cdot 27 \\
& =2 \cdot 69-5 \cdot(165-2 \cdot 69) \\
& =12 \cdot 69-5 \cdot 165 \\
& =12 \cdot(234-165)-5 \cdot 165 \\
& =12 \cdot 234-17 \cdot 165,
\end{aligned}
$$

so we may take $r=12$ and $s=-17$.
2.30. Prove that there are an infinite number of primes of the form $4 n-1$.

Solution. Suppose, for contradiction, that there are finitely many: p_{1}, \ldots, p_{k}. Let $N=4 p_{1} \ldots p_{k}-1$. Since N differers from a multiple of every p_{i} by 1 , it cannot be divisible by any p_{i} on the list. But it also cannot be divisible only by primes of the form $4 n+1$ since the product of such primes will be congruent to 1 modulo 4 , while $N \equiv-1(\bmod 4)$. Moreover, N is odd so it is not divisible by any even prime. Thus N must be divisible by at least one prime of the form $4 n-1$ that does not show up on the initial list. This contradiction proves the result.
3.1(f). Find all $x \in \mathbb{Z}$ satisfying $3 x \equiv 1(\bmod 6)$

Solution. The multiples of 3 modulo 6 are 0 and 3 , so there are no solutions to this equation.
3.7. Let $S=\mathbb{R} \backslash\{-1\}$ and define a binary operation on S by $a * b=a+b+a b$. Prove that $(S, *)$ is an abelian group.

Solution.

- We first show that the operation gives a function $S \times S \rightarrow S$. Certainly $a * b \in \mathbb{R}$, so we just need to show that if $a, b \in S$ then $a * b \neq-1$. If $a * b=-1$ then $1+a+b+a b=0$, or $(1+a)(1+b)=0$. This is impossible since $a \neq-1$ and $b \neq-1$.
- We show that 0 is the identity for S : for any $a \in S$, we have $0 * a=0+a+0 \cdot a=a=a+0+a \cdot 0=$ $a * 0$.
- We show that the operation is associative:

$$
\begin{aligned}
a *(b * c) & =a *(b+c+b c) \\
& =a+b+c+b c+a(b+c+b c) \\
& =a+b+c+b c+a b+a c+a b c \\
& =a+b+a b+c+(a+b+a b) c \\
& =(a+b+a b) * c \\
& =(a * b) * c .
\end{aligned}
$$

- We show that if $a \in S$ then $\frac{-a}{1+a} \in S$ is its inverse. Note that $\frac{-a}{1+a} \in \mathbb{R}$ since $a \neq-1$. Moreover, if $\frac{-a}{1+a}=-1$ then $-a=-1-a$, which is impossible. Thus $\frac{-a}{1+a} \in S$. We then compute

$$
\begin{aligned}
& a * \frac{-a}{1+a}=a+\frac{-a}{1+a}+\frac{-a^{2}}{1+a}=0 \\
& \frac{-a}{1+a} * a=\frac{-a}{1+a}+a+\frac{-a^{2}}{1+a}=0
\end{aligned}
$$

- Finally, note that $a * b=a+b+a b=b * a$ since addition and multiplication are commutative in \mathbb{R}.

Thus $(S, *)$ is an abelian group.
3.17. Give an example of three different groups with eight elements. Why are the groups different?

Solution. There are five groups of order eight, up to isomorphism: you can select any three. They are

- \mathbb{Z}_{8},
- $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$,
- $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$,
- D_{4},
- Q_{8}.

The first three are abelian, and thus different from the last two. The first three are distinguished from each other by the largest order of an element (8 vs 4 vs 2). To see that D_{4} and Q_{8} are not isomorphic, note that D_{4} has four elements of order 2 (the four reflections) while Q_{8} only has one (-1).
3.22. Show that addition and multiplication $\bmod n$ are well defined operations. That is, show that the operations do not depend on the choice of the representative from the equivalence classes mod n.

Solution. Suppose that $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$. Then there are integers r, s with $a=b+r n$ and $c=d+s n$. We find that

$$
\begin{aligned}
a+c & =b+r n+d+s n \\
& =b+d+(r+s) n
\end{aligned}
$$

so $a+c \equiv b+d(\bmod n)$ and thus addition is well defined. Similarly,

$$
\begin{aligned}
a c & =(b+r n)(c+s n) \\
& =b c+b s n+c r n+r s n^{2} \\
& =b c+(b s+c r+r s n) n
\end{aligned}
$$

so $a c \equiv b d(\bmod n)$ and thus multiplication is well defined.
3.25. Let a and b be elements in a group G. Prove that $a b^{n} a^{-1}=\left(a b a^{-1}\right)^{n}$ for $n \in \mathbb{Z}$.

Solution.

- For $n=0$, this is the statement that $a \cdot 1 \cdot a^{-1}=\left(a b a^{-1}\right)^{0}$, which is true since both sides are the identity.
- For $n>0$ we prove the statement by induction. Suppose that $a b^{n-1} a^{-1}=\left(a b a^{-1}\right)^{n-1}$. Then

$$
\begin{aligned}
\left(a b a^{-1}\right)^{n} & =\left(a b a^{-1}\right)^{n-1}\left(a b a^{-1}\right) \\
& =a b^{n-1} a^{-1} a b a^{-1} \\
& =a b^{n} a^{-1}
\end{aligned}
$$

- Finally, for $n<0$, let $m=-n$. Using the statement for $m>0$, we have

$$
\begin{aligned}
\left(a b a^{-1}\right)^{n} & =\left(\left(a b a^{-1}\right)^{-1}\right)^{m} \\
& =\left(a b^{-1} a^{-1}\right)^{m} \\
& =a\left(b^{-1}\right)^{m} a^{-1} \\
& =a b^{n} a^{-1}
\end{aligned}
$$

3.31. Show that if $a^{2}=e$ for all elements a in a group G then G must be abelian.

Solution. Suppose $a, b \in G$. Then $e=(a b)(a b)$ and $e=(a b)(b a)$ since $b^{2}=e$ and $a^{2}=e$. Since inverses are unique, $a b=b a$. Thus G is abelian.
3.33. Let G be a group and suppose that $(a b)^{2}=a^{2} b^{2}$ for all a and b in G. Prove that G is an abelian group.

Solution. For all $a, b \in G$ we have

$$
a b a b=a a b b
$$

Multiplying on the left by a^{-1} and on the right by b^{-1} yields $b a=a b$, so G is abelian.
3.40. Let

$$
G=\left\{\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)\right\}
$$

where $\theta \in \mathbb{R}$. Prove that G is a subgroup of $\mathrm{SL}_{2}(\mathbb{R})$.

Solution.

- Since $\operatorname{det}\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$, we get that $G \subseteq \mathrm{SL}_{2}(\mathbb{R})$.
- Setting $\theta=0$ shows that G contains the identity.
- Since

$$
\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \cdot\left(\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),
$$

G is closed under taking inverses.

- We have

$$
\begin{aligned}
\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \cdot\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right) & =\left(\begin{array}{cc}
\cos (\theta) \cos (\varphi)-\sin (\theta) \sin (\varphi) & -\sin (\theta) \cos (\varphi)-\cos (\theta) \sin (\varphi) \\
\sin (\theta) & \cos (\varphi)+\cos (\theta) \sin (\varphi) \\
\cos (\theta) \cos (\varphi)-\sin (\theta) \sin (\varphi)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos (\theta+\varphi) & -\sin (\theta+\varphi) \\
\sin (\theta+\varphi) & \cos (\theta+\varphi)
\end{array}\right) .
\end{aligned}
$$

Thus G is closed under taking products, and thus G is a subgroup of $\mathrm{SL}_{2}(\mathbb{R})$.
3.46. Prove or disprove: if H and K are subgroups of a group G, then $H \cup K$ is a subgroup of G.

Solution. This is only true if $H \subseteq K$ or $K \subseteq H$. It suffices to give a counterexample: if $G=\mathbb{Z}_{6}$, $H=\{0,2,4\}$ and $K=\{0,3\}$ then $H \cup K=\{0,2,3,4\}$ is not a subgroup since it's not closed under addition.
3.52. Prove or disprove: every proper subgroup of a nonabelian group is nonabelian.

Solution. False. For example, $\{ \pm 1, \pm i\} \subset Q_{8}$ is abelian but Q_{8} is not.
3.54. Let H be a subgroup of G. If $g \in G$, show that $g H g^{-1}=\left\{g^{-1} h g: h \in H\right\}$ is also a subgroup of G.

Solution.

- Note that $g H^{-1}$ is a subset of G since G is closed under multiplication.
- Since $1 \in H$, we have $1=g \cdot 1 \cdot g^{-1} \in g H g^{-1}$.
- If $g h g^{-1}, g h^{\prime} g^{-1} \in g H g^{-1}$ then $g h g^{-1} g h^{\prime} g^{-1}=g h h^{\prime} g^{-1} \in g H g^{-1}$ since H is closed under multiplication.
- If $g h g^{-1} \in g H g^{-1}$ then $\left(g h g^{-1}\right)^{-1}=g h^{-1} g^{-1} \in g H g^{-1}$ since H is closed under taking inverses.

