
Math 430 – Problem Set 1 Solutions

1.2. If A = {a, b, c}, B = {1, 2, 3}, C = {x}, and D = ∅, list all of the elements of each of the following sets.

(a) A×B

Solution.
{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3), (c, 1), (c, 2), (c, 3)}.

(b) B ×A

Solution.
{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c)}.

(c) A×B × C

Solution.

{(a, 1, x), (a, 2, x), (a, 3, x), (b, 1, x), (b, 2, x), (b, 3, x), (c, 1, x), (c, 2, x), (c, 3, x)}.

(d) A×D

Solution.
∅.

Note that {∅} is not correct: this is the set containing ∅.

1.6. Prove (A ∪B) ∩ (A ∪ C) = A ∪ (B ∩ C).

Solution. Suppose x ∈ A∪(B∩C). Then, either x ∈ A (case 1) or x ∈ B∩C (case 2). Since A ⊆ A∪B
and A ⊆ A∪C, in case 1 we get that x ∈ A∪B and x ∈ A∪C and thus x ∈ (A∪B)∩ (A∪C). In case
2, since x ∈ B and B ⊆ A ∪ B, we know x ∈ A ∪ B. Similarly, since x ∈ C and C ⊆ A ∪ C, we know
x ∈ (A ∪C). So in both cases, x ∈ (A ∪B) ∩ (A ∪C) and therefore A ∪ (B ∩C) ⊆ (A ∪B) ∩ (A ∪C).

Conversely, suppose x ∈ (A ∪ B) ∩ (A ∪ C). If x ∈ A, then x ∈ A ∪ (B ∩ C). Alternatively, if x 6∈ A
then x must be in B and in C since x ∈ (A ∪ B) and x ∈ (A ∪ C). Thus x ∈ (B ∩ C). Therefore
(A∪B)∩(A∪C) ⊆ A∪(B∩C). With both inclusions proven, we get (A∪B)∩(A∪C) = A∪(B∩C).

1.17. Which of the following relations f : Q→ Q define a mapping? In each case, supply a reason why f is
or is not a mapping.

(a) f(p/q) = p+1
p−2

Solution. Note that 1/2 = 3/6, but f(1/2) = −2 while f(3/6) = 4. Since f is multivalued, it is
not a function.

(b) f(p/q) = 3p
3q

Solution. This is a function. If p/q = p′/q′ then 3p
3q = p

q = p′

q′ = 3p′

3q′ .

(c) f(p/q) = p+q
q2

Solution. Note that 1/2 = 2/4, but f(1/2) = 3
4 while f(2/4) = 6

16 . Since f is multivalued, it is
not a function.
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(d) f(p/q) = 3p2

7q2 −
p
q

Solution. This is a function. If p/q = p′/q′ then pq′ = qp′. Thus

f(p/q) =
3p2

7q2
− p

q

=
3p2(q′)2

7q2(q′)2
− p′

q′

=
3(pq′)2

7q2(q′)2
− p′

q′

=
3(p′q)2

7q2(q′)2
− p′

q′

=
3(p′)2q2

7(q′)2q2
− p′

q′

=
3(p′)2

7(q′)2
− p′

q′

= f(p′/q′).

1.20. (a) Define a function f : N→ N that is one-to-one but not onto.

Solution. The function f(n) = n + 1 is one-to-one (if n + 1 = m + 1 then n = m) but not onto
(1 is not in the image since 0 6∈ N).

(b) Define a function f : N→ N that is onto but not one-to-one.

Solution. The function f(n) = dn/2e is onto (given m, f(2m) = m) but not one-to-one (f(1) =
f(2) = 1).

1.22. Let f : A→ B and g : B → C be maps.

(a) If f and g are both one-to-one functions, show that g ◦ f is one-to-one.

Solution. Suppose a, a′ ∈ A with g(f(a)) = g(f(a′)). Since g is one-to-one, f(a) = f(a′). Since
f is one-to-one, a = a′. Thus g ◦ f is one-to-one.

(b) If g ◦ f is onto, show that g is onto.

Solution. Suppose c ∈ C. Since g ◦ f is onto, there is an a ∈ A with g(f(a)) = c. Setting
b = f(a), we have b ∈ B with g(b) = c. Thus g is onto.

(c) If g ◦ f is one-to-one, show that f is one-to-one.

Solution. Suppose that a, a′ ∈ A with f(a) = f(a′). Then g(f(a)) = g(f(a′)). Since g ◦ f is
one-to-one, a = a′. Thus f is one-to-one.

(d) If g ◦ f is one-to-one and f is onto, show that g is one-to-one.

Solution. By (c), f is one-to-one and thus bijective. Therefore it has an inverse, so g = g ◦ (f ◦
f−1) = (g ◦ f) ◦ f−1 is the composition of one-to-one functions and is thus one-to-one.

(e) If g ◦ f is onto and g is one-to-one, show that f is onto.

Solution. One can argue as in part (d), or as follows. Suppose b ∈ B. Since g ◦ f is onto, there
is an a ∈ A with g(f(a)) = g(b). Since g is one-to-one, f(a) = b. Thus f is onto.

1.25. Determine whether or not the following relations are equivalence relations on the given set. If the
relation is an equivalence relation, describe the partition given by it. If the relation is not an equivalence
relation, state why it fails to be one.
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(a) x ∼ y in R if x ≥ y

Solution. This relation is not an equivalence relation since it is not symmetric: 2 ∼ 1 but 1 6∼ 2.

(b) m ∼ y in Z if mn > 0

Solution. This relation is not an equivalence relation since it is not reflexive: 0 6∼ 0.

(c) x ∼ y in R if |x− y| ≤ 4

Solution. This relation is not an equivalence relation since it is not transitive: 0 ∼ 3 and 3 ∼ 6
but 0 6∼ 6.

(d) m ∼ n in Z if m ≡ n (mod 6)

Solution. This relation is an equivalence relation. The partition are the congruence classes
modulo 6: 0 + 6Z, 1 + 6Z, 2 + 6Z, 3 + 6Z, 4 + 6Z and 5 + 6Z.

1.28. Find the error in the following argument by providing a counterexample. “The reflexive property is
redundant in the axioms for an equivalence relation. If x ∼ y, then y ∼ x by the symmetric property.
Using the transitive property, we can deduce that x ∼ x.”

Solution. The problem is that, given x, there may be no y with x ∼ y. For example, for any set
X, consider the empty relation where x ∼ y is never true. This is symmetric and transitive, but not
reflexive.

2.9. Use induction to prove that 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1 for n ∈ N.

Solution. For the base case of n = 1, we have 1 + 2 = 22 − 1.

Suppose that 1 + 2 + 22 + · · ·+ 2n−1 = 2n − 1. Then

1 + 2 + 22 + · · ·+ 2n−1 + 2n = (2n − 1) + 2n

= 2 · 2n − 1

= 2n+1 − 1.

The result then holds by induction.

2.12. For every positive integer n, show that a set with exactly n elements has a power set with exactly 2n

elements.

Solution. We prove this statement by induction. If X = {x} has one element, then P(X) = {∅, {x}}
has two elements and the base case holds.

Now assume that the statement holds for a given positive integer n. Let X = {a1, . . . , an+1} have n+1
elements. Let

Pin = {A ∈ P(X) | an+1 ∈ A}
Pout = {A ∈ P(X) | an+1 6∈ A}

Since every A ∈ P(X) either contains an+1 or does not, P(X) = Pin t Pout is a disjoint union of Pin

and Pout and thus the number of elements in P(X) is the sum of the sizes of Pin and of Pout. Since
Pout = P({a1, . . . , an}), it has 2n elements by the induction hypothesis. The function

Pout → Pin

A 7→ A ∪ {an+1}

is a bijection, and thus Pin and Pout have the same size. Therefore, P(X) has size 2n + 2n = 2n+1.
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