Math 240 Practice Problems

Note that a few of these questions are somewhat harder than questions on the final will be, but they will all help you practice the material from this semester.

- 1. Consider the three points A = (3, 1, 4), B = (6, 4, 4), C = (3, 4, 1).
 - (a) Find the area of the triangle formed by A, B, and C.
 - (b) Find the angles of this triangle.
 - (c) Find an equation for the plane containing A, B and C.
- 2. Let $\mathbf{v} = \langle 7, 6, 5 \rangle$ and $\mathbf{w} = \langle 3, 2, -1 \rangle$. Express \mathbf{v} as the sum of two perpendicular vectors, one of which points in the direction of \mathbf{w} .
- 3. The eight vertices of a cube centered at (0,0,0) of side length 2 are at $(\pm 1, \pm 1, \pm 1)$.
 - (a) Find the four vertices of the cube, including (1, 1, 1), that form a regular tetrahedron.
 - (b) A methane molecule consists of a hydrogen atom at each of the vertices of a regular tetrahedron and a carbon atom at the center. Find the "bond angle," i.e. the angle made by the vectors from the carbon atom to two hydrogen atoms.
 - (c) Find the angle between two adjacent edges of the tetrahedron, and the angle between two opposite edges.
 - (d) Find the area of a face of the tetrahedron using vectors.
 - (e) Find the volume of the tetrahedron using vectors.
- 4. Describe the set of vectors **v** such that $\frac{\mathbf{v}}{|\mathbf{v}|} \cdot \langle 1, 1, 1 \rangle = 1$.
- 5. Consider the helix given by the parametric equation $\mathbf{r}(t) = (\cos t, \sin t, t)$.
 - (a) Find an equation for the line tangent to the helix at $\mathbf{r}(t)$ (use u for the parameter of the line).
 - (b) Find a parameterization for the curve traced out by the intersection of the xy-plane and the tangent lines described above.
- 6. Consider the curve defined parametrically by $\mathbf{r}(t) = (4e^{3t}, e^{2t}, 2e^{2t})$.
 - (a) At what value t_0 is the tangent vector to \mathbf{r} at $\mathbf{r}(t_0)$ parallel to the plane \mathbf{P} given by the equation x + 2y 7z = 17?
 - (b) Determine the parametric and symmetric equations of the line L tangent to r at $\mathbf{r}(t_0)$.
 - (c) Determine the parametric equation of the line passing through $\mathbf{r}(t_0)$, parallel to the plane \mathbf{P} and perpendicular to the line \mathbf{L} .
- 7. Let Q be the point (1, 4, 3) and \mathcal{P} be the plane given by the equation 2x + y z = 4.
 - (a) Give parametric and symmetric equations of the line passing through Q and perpendicular to \mathcal{P} .
 - (b) Find the distance from Q to \mathcal{P} .
- 8. Let \mathcal{P} be the tangent plane to $f(x, y) = 4x^3 3y^2$ at the point (2, 4). Find the intersection of \mathcal{P} with the *xy*-plane.
- 9. Approximate the function $f(x, y, z) = x^2y 2xz + 1$ near the point (1, 1, 0) by a linear function.
- 10. Suppose $f(x, y, z) = xyz^2 + 2x yz$. Compute the directional derivative of f at the point (1, 1, 1) in the direction of $\langle 1, 2, -1 \rangle$.
- 11. Consider the surface $z = f(x, y) = (2x^2 + 3y^2)e^{-x^2 y^2}$.
 - (a) Find the first and second order partials of f.

- (b) Now imagine pouring water onto this surface at the point $(\frac{1}{2}, \frac{1}{3})$. What is the tangent plane to the surface at this point?
- (c) In what direction will the water flow?
- (d) As the water level rises, it will gradually fill up a bounded xy region until spilling over and flowing out to infinity. At what depth will this occur and at what point (or points) will the water spill over?
- 12. Let $f(x,y) = 4xy x^3y xy^3$.
 - (a) Compute all first and second order partial derivatives of f.
 - (b) Find and classify (as a local minimum, maximum or saddle point) all critical points of f.
 - (c) Find the global minimum and global maximum value of f on the disk of radius 2 around the origin.
 - (d) Find the gradient of f at the point (2, 2).
 - (e) Find the tangent plane to f at the point (2,2).
 - (f) Find a direction **u** such that $D_{\mathbf{u}}(f) = \frac{-24}{5}$.
- 13. Let $f(x, y) = 3xy x^3 y^3$. Find and classify (as a local minimum, maximum or saddle point) all critical points of f.
- 14. Let $f(x, y) = xy + x^5 y^3$. Find and classify (as a local minimum, maximum or saddle point) all critical points of f.
- 15. Find the minimum and maximum values of the function $f(x, y, z) = xy^3 z$ when restricted to the surface xy + yz = -3.
- 16. Find the minimum and maximum values of the function $f(x, y, z) = x^2y yz$ when restricted to the surface $x^2 + yz + \frac{y^2}{2} = 4$.
- 17. Suppose that the variables x, y, z satisfy an equation g(x, y, z) = 0. Assume the point P(1, 1, 1) lies on this level surface of g and that $\nabla g(1, 1, 1) = \langle -1, 1, 2 \rangle$. Let f(x, y, z) be another function, and assume that $\nabla f(1, 1, 1) = \langle 1, 2, 1 \rangle$. Find the gradient of the function w = f(x, y, z(x, y)) of the two independent variables x and y at the point x = 1, y = 1.
- 18. Suppose f, g and h are differentiable functions of two variables, and u and v are differentiable functions of one variable. Suppose that you know that $u(\pi) = 2$, that $v(\pi) = 4$, that g(2,4) = -1 and h(2,4) = 0. In addition, I tell you that $u'(\pi) = 1$, that $v'(\pi) = -1$, that the gradient of g at (1, -1) is $\langle 8, 0 \rangle$, that the gradient of g at (2,4) is $\langle 5, 3 \rangle$, that $h(x, y) = x^3 xy$, and that the gradient of f at (-1,0) is $\langle 2, 3 \rangle$. Let $\alpha(t) = f(g(u(t), v(t)), h(u(t), v(t)))$. Find $a'(\pi)$.
- 19. Consider the region bounded by the two cylinders $y^2 + z^2 = 1$ and $x^2 + z^2 = 1$. Find an expression that gives the average distance of a point in this region to (0, 0, 1) (you do not have to evaluate any integrals).
- 20. Integrate the function $x^2 + z^2$ over the region enclosed by the planes z = 0 and z = 1 and the cone $z^2 = x^2 + y^2$.
- 21. Find the area of the ellipse $(4x y)^2 + (x 3y)^2 < 1$ using an appropriate change of coordinates.
- 22. Consider the region bounded by the surface

$$z = (3x + 5y)^2 + (2x + 4y)^2$$

and the plane

$$z = 10x + 18y + 2$$

(a) Set up an integral to find the volume of this region.

Hint: 10x + 18y = 2(3x + 5y) + 2(2x + 4y)

- (b) Evaluate the integral you found in the first part.
- 23. Give an expression for the arclength of the Archemedian spiral $r = \theta$ between the origin and the point $(2\pi, 0)$.
- 24. Let C be the spiral given in polar coordinates by the equation $r = \theta$, $0 \le \theta \le 2\pi$, traced out starting from the origin. Let $\mathbf{F}(x, y) = (x^2, y)$. Reduce the following line integral to a single variable integral, but do not evaluate the resulting single variable integral:

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

- 25. Let C be the twisted cubic (t, t^2, t^3) with $1 \le t \le 2$, and let $\mathbf{F}(x, y, z) = (y^z x^{y^z}, \ln(x) z y^{z-1} x^{y^z}, \ln(x) \ln(y) y^z x^{y^z})$. Evaluate $\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r}$.
- 26. Consider the vector field $\mathbf{F}(x, y, z) = (2xy + z, x^2 + 3y^2z, y^3 + x 4z^3).$
 - (a) Is **F** conservative? Why or why not?
 - (b) If **F** is conservative, find a potential function. If not, find a closed path C such that $\int_C \mathbf{F} \cdot d\mathbf{r} \neq 0$.
- 27. For each of the following vector fields, determine whether it is conservative. If it is, find a potential function.
 - (a) $\mathbf{F}_1(x, y, z) = \langle 4x^3y + 3z, x^4 z + 2, 3x + y \rangle.$
 - (b) $\mathbf{F}_2(x, y, z) = \langle 2x + y \cos(xy), x \cos(xy) ze^{yz}, 2 ye^{yz} \rangle.$

28. Evaluate the following line integrals.

- (a) $\int_{C_1} \mathbf{F}_1(x, y, z) \cdot d\mathbf{r}$ where $\mathbf{F}_1(x, y, z) = \langle 4x^3y + 3z, x^4 z + 2, 3x + y \rangle$ as in the previous problem and C_1 is the portion of the parabola $x = y = z^2$ from (1, 1, -1) to (1, 1, 1).
- (b) $\int_{C_2} \mathbf{F}_2(x, y, z) \cdot d\mathbf{r}$ where $\mathbf{F}_2(x, y, z) = \langle 2x + y \cos(xy), x \cos(xy) ze^{yz}, 2 ye^{yz} \rangle$ as in the previous problem and C_2 is the twisted cubic given by $\mathbf{r}(t) = (t, t^2, t^3), 0 \le t \le 1$.
- 29. Let $\mathbf{F}(x, y, z) = (ax^2y + z^2, x^3 + 4y^3z, bxz + y^4).$
 - (a) For what values of a and b will **F** be conservative?
 - (b) Using these values of a and b, find a function f(x, y, z) such that $\mathbf{F} = \nabla f$.
 - (c) Again using these values of a and b, give a defining equation for a surface S with the property that

$$\int_P^Q \mathbf{F} \cdot d\mathbf{r} = 0$$

for any two points P and Q lying on S and any path between them.

- 30. Let C be the curve formed by intersecting the paraboloid $z = (x+y)^2 + (x+2y+1)^2$ and the plane x-y-z+2 = 0, oriented counterclockwise when viewed from above. Let f(x, y, z) be an arbitrary smooth function, and set $\mathbf{F}(x, y, z) = \nabla f + xy\mathbf{i} xy\mathbf{j} xy\mathbf{k}$. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 31. Parameterize each of the following curves or surfaces. *Hint:* for many of these, you can use vector addition to break up the problem into easier pieces.
 - (a) Consider a circle rolling along a line without slipping. Parametrize the path a point on this circle traces out.
 - (b) The cone with vertex half-angle α and axis pointing along the positive x-axis.
 - (c) A Möbius strip (a Möbius strip can be formed by taking a rectangular strip of paper, making a half twist and then taping the ends together). You may choose any constants necessary, or leave them as variables.
 - (d) A spiraling seashell: a tubular surface centered on the helix $(\cos t, \sin t, t)$, with radius away from the helix proportional to t.
 - (e) Consider two helices around the z-axis of radius 1, separated by a 180° rotation (a double helix). Parametrize the surface formed by connecting corresponding points in these helices with line segments.
- 32. Let S be a sphere of radius 1, and let the density be equal to the distance *along the sphere* from the north pole of the sphere. Find the mass.
- 33. Let R be the region bounded above by the surface $z = 16 x^4 2x^2y^2 y^4$ and below by the lower half of the sphere of radius 2 centered at the origin. If the density of the region is given by $\delta(x, y, z) = x^2 + y^2$, find the center of mass of R.
- 34. Consider the ellipsoid E given by the equation $\frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{36} = 1$. Let $f(x, y, z) = \sqrt{2x^2 + 2y^2 + 1}$. Calculate the value of $\iint_{x \to 0} f(x, y, z) dS$

$$\iint_E f(x,y,z)dS$$

Hint: parameterize E similarly to a sphere.

35. Consider the sphere S of radius 1 centered at the point (0,0,1)

- (a) Parameterize S. Hint: how would the parameterizations of a sphere centered at the origin and a sphere centered at (0, 0, 1) differ?
- (b) Let $f(x, y, z) = x^2 z + y^2 z x^2 y^2$. Compute

$$\iint_S f(x, y, z) \, dS.$$

(c) Let $\mathbf{F}(x, y, z) = \langle x + 3y, 2y - z, 4z + x \rangle$. Compute

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

(d) Now consider just the upper half of S (above the z = 1 plane). Call this surface S_1 and equip it with the upward pointing normal. Let $\mathbf{F} = \langle z - y - 1, x + z^2 + z - 2, xy^2 + xz - 4 \rangle$. Compute

$$\iint_{S_1} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS.$$

- 36. For each of the following integrals, use either Green's Theorem, the Divergence Theorem or Stokes' Theorem to write the given integral as an iterated integral with a different number of integral signs (by iterated integral I mean a triple integral, a double integral or a single integral: ie, you need to transform surface integrals and line integrals to double and single integrals and put appropriate limits on your integrals).
 - (a) Let C be the curve given parametrically by

$$\mathbf{r}(t) = \left(\left(t^3 - \frac{\pi^2 t}{9} \right)^2 \cos t, \left(t^3 - \frac{\pi^2 t}{9} \right)^2 \sin t, 0 \right),$$

where t runs from $-\frac{\pi}{3}$ to $\frac{\pi}{3}$. Let

$$\mathbf{F}(x, y, z) = (xy, x^2 + yz, x + y + 3z).$$

Modify the integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

(b) Let S be the half of the unit sphere that lies above the xy-plane, with upward pointing unit normal. Let $\mathbf{F}(x, y, z) = (2y, 0, 2x)$. Modify the integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

(c) Let S be the surface obtained by rotating the circle

$$(x-1)^2 + z^2 = 1$$

about the z-axis, oriented outward.

Let $\mathbf{F}(x, y, z) = (x^3 - x, y - y^2 z, y z^2)$. Modify the integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

- 37. Let S be the unit sphere centered at the origin with outward pointing normal and let $\mathbf{F}(x, y, z) = (x, 0, z)$.
 - (a) Find the flux of \mathbf{F} through S directly.
 - (b) Use the divergence theorem to check your answer
- 38. Let S be the part of the paraboloid $z = 1 x^2 y^2$ above the xy-plane, and let $\mathbf{F}(x, y, z) = (x^2 + yz^4 \sin(z^2), x 4y + z, 4z + 1)$. Compute

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

by using the divergence theorem to reduce to a simpler surface integral.

39. Consider the part of the surface $z = -r^2 + 3r - 2$ that lies above the xy-plane (r is the r of cylindrical coordinates). Call this surface S. Let

$$\mathbf{F}(x, y, z) = \langle x + 3y - \sin^4(z^5), x^2 - y^2, -z - 4 \rangle.$$

Evaluate

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

Hint: use the divergence theorem so that the surface integral that you actually compute is easier.

- 40. Consider a donut: a cylindrical region wrapped into a circular ring. Suppose that the radius from the center to the inner edge of the donut is 3 units, and to the outer edge is 5 units.
 - (a) Find limits of integration for the interior of the donut in a coordinate system of your choice.
 - (b) Find a parameterization for the surface of the donut.
- 41. Consider the torus of inner radius 3, outer radius 5, central axis the y-axis and with central plane the xz-plane (this is related to the donut in the previous problem). Let S be the part of this torus above the xy-plane, with outward pointing normal. Define

$$\mathbf{F}(x,y,z) = \langle xy + \cos(\frac{\pi}{2}e^{xyz})\sin(xy), x + \ln(x^2 + y^2 + z^2)z^{x^2 + y^2}, x^2 + xy^4 - 2x\cos(y) - e^{5y - 3\cos(x)} \rangle.$$

Compute

$$\iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS.$$