Math 0240 - Analytic Geometry & Calculus 3 Final Exam, Fall 2016

YOUR NAME (PLEASE PRINT):							
, PEOPLESOFT I							
Please circle th							
Constar	lasz S	Sparling	Trofimov	Wang	Xu	•	
Please circle yo	our lecture ti	me:					
9 AM	11 AM	12 PM	1 PM	$2~\mathrm{PM}$			
	e legibly and logit. You are expect	gically, and s	how all work.			ns may receive	little
1(1	0) 2	(10)	3(10) 4	(10)	5 (10)	
6(1	0) 7	(10)	8(10) 9	_(10)	10(10)	
					TOTAL		(100)

1. (10pts) Let C be the curve given by $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + 3e^{t-1}\mathbf{k}$. At the point P(1,1,3), find the curvature of C and parametric or symmetric equations of the line tangent to C.

- 2. (10pts) Let $f(x, y, z) = \frac{x y}{z} + 4\sqrt{x + 3z}$ and P be the point P(1, 1, 1). The following three parts are relevant. You do not need to repeat any calculation.
 - (a) (4pts) What is the direction in which the maximum rate of change of f occurs at the point P?
 - (b) (3pts) Compute the directional derivative of f(x, y, z) at the point P in the direction of the vector $v = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.
 - (c) (3pts) At the point P(1, 1, 1), the equation $\frac{x-y}{z} + 4\sqrt{x+3z} = 8$ holds. Use the Implicit Function Theorem to find $z_x(1, 1)$.

3. (10pts) Let S be the ellipsoid given by the equation $x^2 + y^2 - xz + z^2 = 2$. That is, S is a level surface of the function $F(x, y, z) = x^2 + y^2 - xz + z^2$. Find all points on S where the tangent plane is parallel to the plane x + 2y + z = 10. (Hint: Use the fact that the coordinates of such a point satisfy the equation of S.)

4. (10pts) Find all critical points of the function $f(x,y) = 2x^2 + y^2 - x^2y$. For each critical point determine if it is a local maximum, a local minimum, or a saddle point.

5. (10pts) Suppose that the volume of a solid E can be represented by the triple integral

$$\iiint_E dV = \int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{1-x^2-y^2}} dz dy dx.$$

Find the mass of the solid E, if the density function is given by $\rho(x,y,z)=e^{(x^2+y^2+z^2)^{3/2}}$.

- 6. (10pts) Given the vector field $\mathbf{F}(x,y) = (2x \ln y y) \mathbf{i} + (x^2y^{-1} x) \mathbf{j}$ defined on $\{(x,y) \mid y > 0\}$.
 - (a) (6pts) Show that F is conservative and find a potential function f.
 - (b) (4pts) A particle, under the influence of the vector field **F**, moves along the curve C given by $\mathbf{r}(t) = (3t)\mathbf{i} + (2t^2 + 1)\mathbf{j}$ from t = 0 to t = 1. Use the Fundamental Theorem of line integrals to find the work done.

7. (10pts)

- (a) (4pts) Use Green's Theorem to show that a region R enclosed by a simple closed curve C, oriented clockwise, has area $\int_C y \, dx$.
- (b) (6pts) Use part a) to compute the area of the region D enclosed by the arch of the cycloid C_1 : $x = t \sin t$, $y = 1 \cos t$ from (0,0) to $(2\pi,0)$ and the line segment C_2 : x = t, y = 0 from $(2\pi,0)$ to (0,0). See the sketch below.

8. (10pts) Find the area of the surface S that is the part of the cylinder $x^2 + y^2 = 1$, below the plane z = 3 - x - y and above the plane z = 0.

9. (10pts) Use Stoke's Theorem to evaluate $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y,z) = x^2y\,\mathbf{i} + \frac{1}{3}x^3\,\mathbf{j} + xy\,\mathbf{k}$, and where C is the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the hyperbolic paraboloid $z = y^2 - x^2$, oriented counterclockwise when viewed from above.

10. (10pts) Let S be the boundary surface of the solid E enclosed by the paraboloids $z=1+x^2+y^2$ and $z=2(x^2+y^2)$, with the normal pointing outward. Compute the flux integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = \left(e^{\sin z} - x^2\right)\mathbf{i} + 2xy\mathbf{j} + (z^2 - \cos y)\mathbf{k}$.

1.
$$V(t) = \langle t, t^2, 3e^{t-1} \rangle$$
 The Curvature @ $P(1,1,3)$ Tangent line

$$2$$
 $\gamma'(t) = < 9, 2, 3e^{t/3}$

$$P(1,13) \Rightarrow t=1 \Rightarrow V(1) = < 1, 2, 3 >$$

(2)
$$\frac{x+1}{1} = \frac{y+1}{2} = \frac{2-3}{3}$$

2.
$$f(x, y, z) = \frac{(x-y)}{z} + 4\sqrt{x+3z}$$

a)
$$\nabla f = \langle f_x, f_y, f_z \rangle$$

 $= \langle f_x, f_y, f_z \rangle$
 $= \langle f_x, f_y, f_z \rangle$

$$P(1,1,1) \Rightarrow vf(1,1,1) = (2, -1, 3)$$

b)
$$Duf(1, 1, 1) = \nabla f \cdot \frac{v}{|v|} = \langle z, -1, 3 \rangle \cdot \frac{\langle z, 3, 1 \rangle}{\sqrt{14}}$$

$$= \frac{4}{\sqrt{14}}$$

9)
$$Z_{x}(l, l) = -\frac{f_{x}(l, l)}{f_{x}(l, l)} = -\frac{2}{3}$$

$$f(x,y) = (-2x^2+y^2-x^2y)$$
Critical pts.

$$\frac{f_{x} = 4x + 0 - 2xy}{f_{y} = 0 + 2y - x^{2}} = 2x(2-y) = 0 \Rightarrow x = 0 \quad y = 2$$

(3)
$$(0,0)$$
 $(2,2)$ $(-2,2)$

$$(0,0) \quad (2,2) \quad (-2,2)$$

$$f_{xx} = 4 - 2y \quad f_{xy} = -2x$$

$$D = 2(4-2y) + 4x^{2}$$

$$f_{yy} = -2x \quad f_{yy} = 2$$

①
$$\mathcal{D}(2,2) = \begin{vmatrix} 0 & -4 \\ -4 & 2 \end{vmatrix}$$
 20 Saddle

$$F = \langle 2x \ln y - y, x^2y^2 - x \rangle$$
1) $Qx - Py = (2xy'-1) - (2x\cdot y - 1) = 0$ (2) Yes.
$$f = \int f_x dx = \int 2x \ln y - y dx = x^2 \ln y - xy + h(y) (2)$$
(2) $\left\{ f_y = x^2 \cdot y' - x + h(y) \right\} = h(y) = 0 \Rightarrow f = x^2 \ln y - xy$.
$$(2) \left\{ Q = x^2 \cdot y' - x + h(y) \right\} = h(y) = 0 \Rightarrow f = x^2 \ln y - xy$$
.
$$h(y) = \sinh(x)$$

b)
$$(2)$$
 $\begin{cases} V(t) = \langle xt, 2t^2 + 1 \rangle \\ t = 0 \Rightarrow (0, 1) \\ t = 1 \Rightarrow (3, 3) \end{cases}$

$$|W| = \begin{cases} F \cdot dv = f(3.3) - f(0, 0) = (3^{2} l_{3} - 3.3) \\ -(0-0) \end{cases}$$

$$|W| = \begin{cases} F \cdot dv = f(3.3) - f(0, 0) = (3^{2} l_{3} - 3.3) \\ -(0-0) \end{cases}$$

F=
$$\langle 2x \ln y - y, x^2y' - x \rangle$$

 $Qx - Pq = (2xy' - 1) - (2x \cdot y - 1) = 0$ Yes.
 $f = \int f_x dx = \int 2x \ln y - y dx = x^2 \ln y - xy + h(y)$
 $fy = x^2 y' - x + h(y)$
 $Q = x^2y' - x$
 $h(y) = constant$

b)
$$Y(t) = \langle 3t, 3t^2 + 1 \rangle$$

 $t = 0 \Rightarrow (0, 1)$
 $t = 1 \Rightarrow (3, 3)$

$$W = \begin{cases} F \cdot dv = f(3,3) - f(0,0) = (3^{2} \cdot l_{1} \cdot 3 - 3 \cdot 3) \\ -(0-0) \end{cases}$$

$$= 9 l_{1} \cdot 3 - 9.$$

$$\underbrace{A} = \underbrace{A \times \frac{1}{6 \text{ recen } D}} = \underbrace{A \times -P_{y} dA} = -\underbrace{A \times -P_{y} dA} = -\underbrace{A \times -P_{y} dA} = \underbrace{A \times -P_$$

(b)
$$A(D) = \int_{0}^{2\pi} y dx = \int_{0}^{2\pi} (1-60xt) \cdot (1-60xt) dt + \int_{2\pi}^{0} 0 dx$$

$$= \int_{0}^{2\pi} 1 - 260xt + 60x^{2}t dt + 0$$

$$= \int_{0}^{2\pi} 1 - 260xt + \frac{1}{2}t + \frac{1}{2}60xx2t dt$$

$$= \int_{0}^{2\pi} 1 - 260xt + \frac{1}{2}t + \frac{1}{2}60xx2t dt$$

$$= (t - 25iht + \frac{1}{2}t + \frac{1}{4}5ih2t) \Big|_{0}^{2\pi}$$

$$= 2\pi - 0 + \pi + 0$$

 $\begin{array}{c} \ell_1 \left< t - s_1 k t, \; | - cost \right> \; (0, 2\pi) \\ \Rightarrow \ell_2 \left< 2, \; 0 \right> \end{array}$

S:
$$X = 0500$$
, $y = 51h0$ $z = 2$
 $0 \le 0 \le 271$
 $0 \le 2 \le 3 - X - y = 3 - 0500 - 51h0$
 $0 \le 2 \le 3 - X - y = 3 - 0500 - 51h0$
 $0 \le 2 \le 3 - X - y = 3 - 0500 - 51h0$
 $0 \le 2 \le 3 - X - y = 3 - 0500 - 51h0$
 $0 \le 0 \le 271$
 $0 \le 0 \le$

S:
$$X=X$$
, $Y=Y$, $Z=Y^2-X^2$
D: $X^2+Y^2=1$
 $N:=\langle -2x, -2y, 17 = \langle -2x, 2y, 1 \rangle$
 $Curl F=\begin{vmatrix} i & j & k \\ -2x & j & -2z \\ x^2y & x^3 & xy \end{vmatrix} = \langle x, -y, 0 \rangle$
 $\begin{vmatrix} x^2y & x^3 & xy \\ x^2y & x^3 & xy \end{vmatrix} = \langle x, -y, 0 \rangle \cdot \langle 2x, +2y, 1 \rangle dA$
 $= \iint_{D} 2x^2+2y^2 dA = -2 \iint_{D} y^2 \cdot y dy d0 = -2\cdot 2\pi \cdot \frac{y}{4} \Big|_{D}$
 $= -\pi T$.

10.
$$F = \langle e^{\sin 2} - 2^2 \rangle$$
 2xy, $z^2 - \cos y \rangle$
 $DNF = -2x + 2x + 2z = 2z = -2$