1. Evaluate \[\int_0^1 \int_{x^2}^1 x^3 \sin(y^3) \, dy \, dx. \]

Solution. We switch the order of integration. The region described is that bounded by \(y = x^2, \ y = 1 \) and \(x = 0 \). Switching to a type II integral, we have

\[
\int_0^1 \int_{x^2}^1 x^3 \sin(y^3) \, dy \, dx = \frac{1}{4} \int_0^1 (\sqrt{y})^4 \sin(y^3) \, dy
\]

\[
= \frac{1}{12} \int_0^1 \sin(u) \, du
\]

\[
= \frac{1 - \cos(1)}{12},
\]

using the substitution \(u = y^3 \).

2. Consider a laminate of radius 1 whose density at any point is proportional to the distance from the center. Find the moment of inertia about its center.

Solution. We use polar coordinates, first finding the mass. The density can be written as \(Kr \) where \(K \) is a constant, and then the mass is given by

\[
m = \int_0^{2\pi} \int_0^1 Kr \cdot r \, dr \, d\theta
\]

\[
= \frac{2K\pi}{3}.
\]

The moment of inertia about its center is then given by

\[
I = \frac{1}{m} \int \rho(x, y)(x^2 + y^2) \, dA
\]

\[
= \frac{3}{2K\pi} \int_0^{2\pi} \int_0^1 Kr \cdot r^2 \cdot r \, dr \, d\theta
\]

\[
= \frac{3}{5}.
\]

3. Find the limits of integration when rewriting the following integral with a different order of integration.

\[
\int_{-1}^1 \int_{\sqrt{1-x^2}}^{1} \int_{\sqrt{x^2+y^2}}^{\sqrt{1-x^2}} f(x, y, z) \, dz \, dy \, dx = \int_{?}^? \int_{?}^? \int_{?}^? f(x, y, z) \, dx \, dy \, dz.
\]
4. Evaluate the following integrals:

Solution. The region of integration is that above the cone \(z = \sqrt{x^2 + y^2} \) and below \(z = 1 \). So the outer limits are \(z = 0 \) to \(z = 1 \). The projection of the cone onto the \(yz \)-plane is the triangle bounded by \(z = 1 \) and the lines \(y = z \) and \(y = -z \), so the middle limits are \(y = -z \) to \(y = z \). Finally, we solve \(z = \sqrt{x^2 + y^2} \) for \(x \), giving \(x = \pm \sqrt{2^2 - y^2} \). Thus the new limits are

\[
\int_0^1 \int_z^{-z} \int_{\sqrt{x^2-y^2}}^{\sqrt{z^2-y^2}} f(x, y, z) \, dx \, dy \, dz.
\]

4. Evaluate the following integrals:

(a)

\[
\int_0^2 \int_{\sqrt{4-x^2}}^{\sqrt{2x^2-y^2}} \int_{\sqrt{2^2-x^2-y^2}}^{\sqrt{2^2+y^2+z^2}} xyz \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx.
\]

Solution. We use spherical coordinates, as hinted by the \(\sqrt{x^2 + y^2 + z^2} \) in the integrand and the limit \(-\sqrt{8-x^2-y^2}\), which is the bottom half of a sphere of radius \(\sqrt{8} \). The projection to the \(xy \)-plane is a semicircle of radius 2 in the first and fourth quadrants, corresponding to a range on \(\theta \) from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\). The intersection between the cone \(z = -\sqrt{x^2+y^2} \) and the hemisphere \(z = -\sqrt{8-x^2-y^2} \) also occurs along the circle \(x^2 + y^2 = 4 \), so the region described is the one below the cone \(z = -\sqrt{x^2+y^2} \), above the sphere \(x^2 + y^2 + z^2 = 8 \) and on the positive side of the plane \(x = 0 \). In spherical coordinates, the corresponding limits are

\[
\int_{-\pi/2}^{\pi/2} \int_{\pi/4}^{\pi} \int_0^{\sqrt{8}} \rho \cos(\theta) \sin(\phi) \rho \sin(\phi) d\rho \, d\phi \, d\theta.
\]

Translating the integrand to spherical coordinates and remembering the volume element \(\rho^2 \sin(\phi) \), we get

\[
\int_{-\pi/2}^{\pi/2} \int_{\pi/4}^{\pi} \int_0^{\sqrt{8}} \rho \cos(\theta) \sin(\phi) \rho \cos(\phi) \cdot \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta
\]

\[
= \int_{-\pi/2}^{\pi/2} \int_{\pi/4}^{\pi} \int_0^{\sqrt{8}} \rho^3 \sin^2(\phi) \, d\rho \, d\phi \, d\theta
\]

\[
= \int_{-\pi/2}^{\pi/2} \int_{\pi/4}^{\pi} \left[\frac{1}{3} \sin^3(\phi) \right]_0^{\pi} [\rho^6]_0^{\sqrt{8}} \, d\phi \, d\theta
\]

\[
= -128\sqrt{2} \frac{\pi}{9}
\]

(b)

\[
\int_0^2 \int_0^{\sqrt{2x-x^2}} \int_{-1}^{1-\sqrt{x^2+y^2}} yz(2 + \sqrt{x^2+y^2}) \, dz \, dy \, dx.
\]

Solution. We use cylindrical coordinates, as hinted by the repeated appearances of \(\sqrt{x^2 + y^2} \). Note that the middle limit \(y = \sqrt{2x-x^2} \) is a semicircle, as we can see by squaring both sides and then completing the square, yielding \(y^2 + (x-1)^2 = 1 \). This translates to the equation \(r = 2 \cos(\theta) \) in polar coordinates, with \(\theta \) ranging from 0 to \(\frac{\pi}{2} \) since the lower limit on \(y \) is 0. The limits on \(z \)
are handled by just changing \(\sqrt{x^2 + y^2} \) to \(r \). We get

\[
\int_0^2 \int_0^{\sqrt{2x-x^2}} \int_{-1}^{1-\sqrt{x^2+y^2}} yz(2 + \sqrt{x^2 + y^2}) \, dz \, dy \, dx
\]

\[
= \int_0^{\pi/2} \int_0^{\sin^2(\theta)} \int_{-1}^{1-r} r \sin(\theta)z(2 + r) \, dz \, dr \, d\theta
\]

\[
= \frac{1}{2} \int_0^{\pi/2} \int_0^{\sin^2(\theta)} r^2(2 + r) ((1 - r)^2 - (-1)^2) \, dr \, d\theta
\]

\[
= \frac{1}{2} \int_0^{\pi/2} \int_0^{\sin^2(\theta)} r^2 - 4r^3 \, dr \, d\theta
\]

\[
= \int_0^1 \frac{16}{3}u^6 - 8u^4 \, du
\]

\[
= 16 \cdot \frac{8}{21} - \frac{8}{5}
\]

\[
= -\frac{88}{105}
\]

5. Let \(R \) be the region bounded by the ellipse \(2x^2 - 2xy + y^2 = 5 \). Using the change of variables

\[
x = 2u + v \\
y = u + 3v,
\]

evaluate

\[
\iint_R x^2 \, dA.
\]

Solution. Substituting the change of variables into the equation for the ellipse yields

\[
2(2u + v)^2 - 2(2u + v)(u + 3v) + (u + 3v)^2 = 5
\]

\[
8u^2 + 8uv + 2v^2 - 4u^2 - 14uv - 6u^2 + u^2 + 6uv + 9v^2 = 5
\]

\[
5u^2 + 5v^2 = 5
\]

\[
u^2 + v^2 = 1,
\]

so the corresponding region in the uv-plane is a disc of radius 1. Switching to polar coordinates with \(u = r \cos(\theta) \) and \(v = r \sin(\theta) \) yields

\[
\iint_R x^2 \, dA = \int_0^{2\pi} \int_0^1 (2r \cos(\theta) + r \sin(\theta))^2 \, r \, dr \, d\theta
\]

\[
= \left(\int_0^{2\pi} 4 \cos^2(\theta) + 4 \sin(\theta) \cos(\theta) + \sin^2(\theta) \, d\theta \right) \left(\int_0^1 r^3 \, dr \right)
\]

\[
= \frac{5\pi}{4}
\]

6. Find the maximum and minimum values of \(x^2 + 2y^2 + 2z^2 \) subject to the constraint \(x + y + z = 4 \).

Solution. We use Lagrange multipliers with \(f(x, y, z) = x^2 + 2y^2 + 2z^2 \) and \(g(x, y, z) = x + y + z - 4 \). This yields the system of equations

\[
2x = \lambda
\]

\[
4y = \lambda
\]

\[
4z = \lambda
\]

\[
4 = x + y + z.
\]
Solving for x, y, z in the first three equations and substituting into the last gives $\lambda = 4$ and thus $x = 2$ and $y = z = 1$. The value of $f(x, y, z)$ is a minimum at $(2, 1, 1)$ and increases without bound along the plane $x + y + z = 4$ in all directions: there is no maximum.

Of course, the constraint is simple enough that you can also solve for z, substitute and then find critical points for the resulting function of x and y.