Math 240 - Practice Exam 1

1. Find the distance between the lines

$$
\begin{aligned}
& L_{1}:\langle t-1, t+1,2 t\rangle \\
& L_{2}:\langle 2 t+1,0, t-1\rangle
\end{aligned}
$$

Solution. We project a vector a from a point on L_{1} to a point on L_{2} onto the cross product \mathbf{b} of their direction vectors, which is perpendicular to both. The absolute value of the component in this perpendicular direction is the distance.

$$
\begin{aligned}
\mathbf{b} & =\langle 1,1,2\rangle \times\langle 2,0,1\rangle \\
& =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 2 \\
2 & 0 & 1
\end{array}\right| \\
& =\langle 1-0,4-1,0-2\rangle \\
& =\langle 1,3,-2\rangle .
\end{aligned}
$$

The vector a can be chosen as the difference between the base points on the lines: $\mathbf{a}=(1,0,-1)-(-1,1,0)=\langle 2,-1,-1\rangle$. We then have

$$
\begin{aligned}
\operatorname{comp}_{\mathbf{b}} \mathbf{a} & =\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} \\
& =\frac{2-3+2}{\sqrt{1^{2}+3^{2}+(-2)^{2}}} \\
& =\frac{1}{\sqrt{14}}
\end{aligned}
$$

Thus the distance between the two lines is the absolute value of this quantity, or $\frac{1}{\sqrt{14}}$.
2. Consider the curve parameterized by

$$
\mathbf{r}(t)=\left\langle t \sin (t), \frac{2 \sqrt{2}}{3} t^{3 / 2}, t \cos (t)\right\rangle
$$

Find the arclength along this curve between $(0,0,0)$ and $\left(0, \frac{8}{3} \pi^{3 / 2}, 2 \pi\right)$.

Solution. Note that $(0,0,0)$ corresponds to $t=0$ and $\left(0, \frac{8}{3} \pi^{3 / 2}, 2 \pi\right)$ to $t=2 \pi$. We compute the derivative, finding

$$
\mathbf{r}^{\prime}(t)=\langle\sin (t)+t \cos (t), \sqrt{2 t}, \cos (t)-t \sin (t)\rangle .
$$

The arclength is then

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t & =\int_{0}^{2 \pi} \sqrt{(\sin (t)+t \cos (t))^{2}+(\sqrt{2 t})^{2}+(\cos (t)-t \sin (t))^{2}} \mathrm{~d} t \\
& =\int_{0}^{2 \pi} \sqrt{1+2 t+t^{2}} \mathrm{~d} t \\
& =\int_{0}^{2 \pi} t+1 \mathrm{~d} t \\
& =\left[\frac{t^{2}}{2}+t\right]_{0}^{2 \pi} \\
& =2\left(\pi^{2}+\pi\right)
\end{aligned}
$$

3. Consider the curve parameterized by

$$
\mathbf{r}(t)=\left\langle t^{2}, t^{3}-t, t\right\rangle
$$

Find the curvature as a function of t.
Solution. We use the formula $\kappa=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$.

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\left\langle 2 t, 3 t^{2}-1,1\right\rangle \\
\mathbf{r}^{\prime \prime}(t) & =\langle 2,6 t, 0\rangle \\
\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t) & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 t & 3 t^{2}-1 & 1 \\
2 & 6 t & 0
\end{array}\right| \\
& =\left\langle-6 t, 2,6 t^{2}+2\right\rangle \\
\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}} & =\frac{\sqrt{36 t^{4}+60 t^{2}+8}}{\left(9 t^{4}-2 t^{2}+2\right)^{3 / 2}}
\end{aligned}
$$

4. Suppose that S is a surface that contains the two curves given by

$$
\begin{aligned}
& \mathbf{r}_{1}(t)=\left\langle t \cos (t)-1, t^{2}+t+1,2 e^{t}\right\rangle \\
& \mathbf{r}_{2}(t)=\left\langle\ln (t)-t, \sqrt{t}, \frac{2}{t}\right\rangle
\end{aligned}
$$

Find an equation for the tangent plane to S at the point $(-1,1,2)$.
Solution. We need to find the normal vector \mathbf{n} to S at $(-1,1,2)$. Both curves pass through this point $\left(\mathbf{r}_{1}(0)\right.$ and $\left.\mathbf{r}_{2}(1)\right)$, and their derivatives must
be perpendicular to \mathbf{n} since we are told that they lie within S. We can thus compute \mathbf{n} using a cross product:

$$
\begin{aligned}
\mathbf{r}_{1}^{\prime}(t) & =\left\langle\cos (t)-t \sin (t), 2 t+1,2 e^{t}\right\rangle \\
\mathbf{r}_{1}^{\prime}(0) & =\langle 1,1,2\rangle \\
\mathbf{r}_{2}^{\prime}(t) & =\left\langle\frac{1}{t}-1, \frac{1}{2 \sqrt{t}}, \frac{-2}{t^{2}}\right\rangle \\
\mathbf{r}_{2}^{\prime}(1) & =\left\langle 0, \frac{1}{2},-2\right\rangle \\
\mathbf{n} & =\langle 1,1,2\rangle \times\left\langle 0, \frac{1}{2},-2\right\rangle \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 2 \\
0 & \frac{1}{2} & -2
\end{array}\right| \\
& =\left\langle-3,2, \frac{1}{2}\right\rangle .
\end{aligned}
$$

We can rescale by 2 to eliminate the fraction (optional), then write down an equation for the tangent plane

$$
-6(x+1)+4(y-1)+(z-2)=0
$$

5. Suppose that $f(x, y)$ has continuous second partial derivatives, and that

$$
g(u, v)=f\left(u^{2}+v^{2}, u^{2}-v^{2}\right)
$$

Suppose that the derivatives of $f(x, y)$ are given in the following table.

	f	f_{x}	f_{y}	$f_{x x}$	$f_{x y}$	$f_{y y}$
$(1,1)$	1	2	0	-1	1	3
$(2,0)$	0	-1	1	2	0	1

Find the value of $g_{u u}(1,1)$.
Solution. We use a mix of notation for partial derivatives in what follows for clarity. Computing the derivative g_{u} uses the chain rule. In differentiating again, we need to the product rule on each summand, and then the
chain rule when differentiating f_{x} or f_{y} with respect to u.

$$
\begin{aligned}
g_{u} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\
& =f_{x} x_{u}+f_{y} y_{u} \\
g_{u u} & =\frac{\partial}{\partial u}\left(f_{x} x_{u}\right)+\frac{\partial}{\partial u}\left(f_{y} y_{u}\right) \\
& =\frac{\partial f_{x}}{\partial u} x_{u}+f_{x} \frac{\partial x_{u}}{\partial u}+\frac{\partial f_{y}}{\partial u} y_{u}+f_{y} \frac{\partial y_{u}}{\partial u} \\
& =\left(\frac{\partial f_{x}}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f_{x}}{\partial y} \frac{\partial y}{\partial u}\right) x_{u}+f_{x} x_{u u}+\left(\frac{\partial f_{y}}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f_{y}}{\partial y} \frac{\partial y}{\partial u}\right) y_{u}+f_{y} y_{u u} \\
& =\left(f_{x x} x_{u}+f_{x y} y_{u}\right) x_{u}+f_{x} x_{u u}+\left(f_{y x} x_{u}+f_{y y} y_{u}\right) y_{u}+f_{y} y_{u u} \\
& =(2 \cdot 2+0 \cdot 2) \cdot 2+(-1) \cdot 2+(0 \cdot 2+1 \cdot 2) \cdot 2+1 \cdot 2 \\
& =12
\end{aligned}
$$

Note that we only use the second row of the table, since the derivatives of f should be evaluated at $(x(u, v), y(u, v))=(2,0)$. On other other hand, the derivatives of x and y all have value 2 at $(1,1)$, since $x_{u}=y_{u}=2 u$ and $x_{u u}=y_{u u}=2$.
6. Let $f(x, y, z)=x e^{x y z}$.
(a) In what direction is $f(x, y, z)$ increasing the most rapidly near $(1,1,1)$? How quickly is it increasing in this direction?
Solution. The direction of most rapid increase is given by the gradient

$$
\begin{aligned}
\nabla f & =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
& =\left\langle(1+y z) e^{x y z}, x z e^{x y z}, x y e^{x y z}\right\rangle \\
& =\langle 2 e, e, e\rangle
\end{aligned}
$$

The rate of increase is the length of the gradient, $|\nabla f|=\sqrt{6} e$.
(b) Find an equation for the tangent plane to $f(x, y, z)=e$ at the point $(1,1,1)$.
Solution. The gradient is perpendicular to the level surface. We may rescale and divide by e, giving the tangent plane

$$
2(x-1)+(y-1)+(z-1)=0
$$

7. Let $f(x, y)=x^{2}-4 x y+2 y^{4}$. Find the critical points of f and determine which are local minima, local maxima or saddle points.

Solution. We set the partial derivatives of f equal to zero and solve.

$$
\begin{aligned}
& f_{x}=2 x-4 y=0 \\
& f_{y}=-4 x+8 y^{3}=0
\end{aligned}
$$

Thus $x=2 y$ and $-8 y+8 y^{3}=0$ so $y=0$ or $y=1$ or $y=-1$. Thus the critical points are

$$
(-2,-1),(0,0),(2,1)
$$

To determine which are local mins, local maxes and saddle points, we use the second derivative test.

$$
\begin{aligned}
f_{x x} & =2 \\
f_{y y} & =24 y^{2} \\
f_{x y} & =-4 \\
D & =f_{x x} f_{y y}-f_{x y}^{2} \\
& =48 y^{2}-16 .
\end{aligned}
$$

Since $D<0$ at $(0,0)$, this is a saddle point. Since $D>0$ and $f_{x x}>0$ at $(-2,-1)$ and $(2,1)$, these are both local minima.

