Math 240 – Practice Exam 1

1. Find the distance between the lines

$$L_1: \langle t - 1, t + 1, 2t \rangle$$

 $L_2: \langle 2t + 1, 0, t - 1 \rangle$

Solution. We project a vector **a** from a point on L_1 to a point on L_2 onto the cross product **b** of their direction vectors, which is perpendicular to both. The absolute value of the component in this perpendicular direction is the distance.

$$\mathbf{b} = \langle 1, 1, 2 \rangle \times \langle 2, 0, 1 \rangle$$
$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 2 \\ 2 & 0 & 1 \end{vmatrix}$$
$$= \langle 1 - 0, 4 - 1, 0 - 2 \rangle$$
$$= \langle 1, 3, -2 \rangle.$$

The vector **a** can be chosen as the difference between the base points on the lines: $\mathbf{a} = (1, 0, -1) - (-1, 1, 0) = \langle 2, -1, -1 \rangle$. We then have

$$\operatorname{comp}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}$$
$$= \frac{2 - 3 + 2}{\sqrt{1^2 + 3^2 + (-2)^2}}$$
$$= \frac{1}{\sqrt{14}}.$$

Thus the distance between the two lines is the absolute value of this quantity, or $\frac{1}{\sqrt{14}}$.

2. Consider the curve parameterized by

$$\mathbf{r}(t) = \left\langle t\sin(t), \frac{2\sqrt{2}}{3}t^{3/2}, t\cos(t) \right\rangle.$$

Find the arclength along this curve between (0,0,0) and $(0,\frac{8}{3}\pi^{3/2},2\pi)$.

Solution. Note that (0,0,0) corresponds to t = 0 and $(0, \frac{8}{3}\pi^{3/2}, 2\pi)$ to $t = 2\pi$. We compute the derivative, finding

$$\mathbf{r}'(t) = \langle \sin(t) + t\cos(t), \sqrt{2t}, \cos(t) - t\sin(t) \rangle.$$

The arclength is then

$$\begin{split} \int_{0}^{2\pi} |\mathbf{r}'(t)| \, \mathrm{d}t &= \int_{0}^{2\pi} \sqrt{(\sin(t) + t\cos(t))^2 + (\sqrt{2t})^2 + (\cos(t) - t\sin(t))^2} \, \mathrm{d}t \\ &= \int_{0}^{2\pi} \sqrt{1 + 2t + t^2} \, \mathrm{d}t \\ &= \int_{0}^{2\pi} t + 1 \, \mathrm{d}t \\ &= \left[\frac{t^2}{2} + t\right]_{0}^{2\pi} \\ &= 2(\pi^2 + \pi). \end{split}$$

3. Consider the curve parameterized by

$$\mathbf{r}(t) = \langle t^2, t^3 - t, t \rangle.$$

Find the curvature as a function of t.

Solution. We use the formula $\kappa = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$.

$$\begin{aligned} \mathbf{r}'(t) &= \langle 2t, 3t^2 - 1, 1 \rangle \\ \mathbf{r}''(t) &= \langle 2, 6t, 0 \rangle \\ \mathbf{r}'(t) \times \mathbf{r}''(t) &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2t & 3t^2 - 1 & 1 \\ 2 & 3t^2 - 1 & 0 \end{vmatrix} \\ &= \langle -6t, 2, 6t^2 + 2 \rangle \\ \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} &= \frac{\sqrt{36t^4 + 60t^2 + 8}}{(9t^4 - 2t^2 + 2)^{3/2}}. \end{aligned}$$

4. Suppose that S is a surface that contains the two curves given by

$$\mathbf{r}_1(t) = \langle t\cos(t) - 1, t^2 + t + 1, 2e^t \rangle$$
$$\mathbf{r}_2(t) = \langle \ln(t) - t, \sqrt{t}, \frac{2}{t} \rangle$$

Find an equation for the tangent plane to S at the point (-1, 1, 2).

Solution. We need to find the normal vector \mathbf{n} to S at (-1, 1, 2). Both curves pass through this point $(\mathbf{r}_1(0) \text{ and } \mathbf{r}_2(1))$, and their derivatives must

be perpendicular to \mathbf{n} since we are told that they lie within S. We can thus compute \mathbf{n} using a cross product:

$$\begin{aligned} \mathbf{r}_{1}'(t) &= \langle \cos(t) - t\sin(t), 2t + 1, 2e^{t} \rangle \\ \mathbf{r}_{1}'(0) &= \langle 1, 1, 2 \rangle \\ \mathbf{r}_{2}'(t) &= \langle \frac{1}{t} - 1, \frac{1}{2\sqrt{t}}, \frac{-2}{t^{2}} \rangle \\ \mathbf{r}_{2}'(1) &= \langle 0, \frac{1}{2}, -2 \rangle \\ \mathbf{n} &= \langle 1, 1, 2 \rangle \times \langle 0, \frac{1}{2}, -2 \rangle \\ &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & \frac{1}{2} & -2 \end{vmatrix} \\ &= \langle -3, 2, \frac{1}{2} \rangle. \end{aligned}$$

We can rescale by 2 to eliminate the fraction (optional), then write down an equation for the tangent plane

$$-6(x+1) + 4(y-1) + (z-2) = 0.$$

5. Suppose that f(x, y) has continuous second partial derivatives, and that

$$g(u, v) = f(u^2 + v^2, u^2 - v^2).$$

Suppose that the derivatives of f(x, y) are given in the following table.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		f	f_x	f_y	f_{xx}	f_{xy}	f_{yy}
(20) 0 1 1 2 0 1	(1, 1)	1	2	0	-1	1	3
(2,0) 0 -1 1 2 0 1	(2, 0)	0	-1	1	2	0	1

Find the value of $g_{uu}(1, 1)$.

Solution. We use a mix of notation for partial derivatives in what follows for clarity. Computing the derivative g_u uses the chain rule. In differentiating again, we need to the product rule on each summand, and then the

chain rule when differentiating f_x or f_y with respect to u.

$$\begin{split} g_u &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\ &= f_x x_u + f_y y_u \\ g_{uu} &= \frac{\partial}{\partial u} (f_x x_u) + \frac{\partial}{\partial u} (f_y y_u) \\ &= \frac{\partial f_x}{\partial u} x_u + f_x \frac{\partial x_u}{\partial u} + \frac{\partial f_y}{\partial u} y_u + f_y \frac{\partial y_u}{\partial u} \\ &= \left(\frac{\partial f_x}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f_x}{\partial y} \frac{\partial y}{\partial u} \right) x_u + f_x x_{uu} + \left(\frac{\partial f_y}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f_y}{\partial y} \frac{\partial y}{\partial u} \right) y_u + f_y y_{uu} \\ &= (f_{xx} x_u + f_{xy} y_u) x_u + f_x x_{uu} + (f_{yx} x_u + f_{yy} y_u) y_u + f_y y_{uu} \\ &= (2 \cdot 2 + 0 \cdot 2) \cdot 2 + (-1) \cdot 2 + (0 \cdot 2 + 1 \cdot 2) \cdot 2 + 1 \cdot 2 \\ &= 12. \end{split}$$

Note that we only use the second row of the table, since the derivatives of f should be evaluated at (x(u, v), y(u, v)) = (2, 0). On other other hand, the derivatives of x and y all have value 2 at (1, 1), since $x_u = y_u = 2u$ and $x_{uu} = y_{uu} = 2$.

- 6. Let $f(x, y, z) = xe^{xyz}$.
 - (a) In what direction is f(x, y, z) increasing the most rapidly near (1, 1, 1)? How quickly is it increasing in this direction?

Solution. The direction of most rapid increase is given by the gradient

$$\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$
$$= \left\langle (1 + yz)e^{xyz}, xze^{xyz}, xye^{xyz} \right\rangle$$
$$= \left\langle 2e, e, e \right\rangle.$$

The rate of increase is the length of the gradient, $|\nabla f| = \sqrt{6}e$.

(b) Find an equation for the tangent plane to f(x, y, z) = e at the point (1, 1, 1).

Solution. The gradient is perpendicular to the level surface. We may rescale and divide by e, giving the tangent plane

$$2(x-1) + (y-1) + (z-1) = 0.$$

7. Let $f(x, y) = x^2 - 4xy + 2y^4$. Find the critical points of f and determine which are local minima, local maxima or saddle points.

Solution. We set the partial derivatives of f equal to zero and solve.

$$f_x = 2x - 4y = 0$$
$$f_y = -4x + 8y^3 = 0$$

Thus x = 2y and $-8y + 8y^3 = 0$ so y = 0 or y = 1 or y = -1. Thus the critical points are

$$(-2, -1), (0, 0), (2, 1).$$

To determine which are local mins, local maxes and saddle points, we use the second derivative test.

$$f_{xx} = 2$$

$$f_{yy} = 24y^2$$

$$f_{xy} = -4$$

$$D = f_{xx}f_{yy} - f_{xy}^2$$

$$= 48y^2 - 16.$$

Since D < 0 at (0,0), this is a saddle point. Since D > 0 and $f_{xx} > 0$ at (-2,-1) and (2,1), these are both local minima.