Math 240 – Practice Exam 1

1. Find the distance between the lines

$$L_1: \langle t - 1, t + 1, 2t \rangle$$

 $L_2: \langle 2t + 1, 0, t - 1 \rangle$

2. Consider the curve parameterized by

$$\mathbf{r}(t) = \left\langle t\sin(t), \frac{2\sqrt{2}}{3}t^{3/2}, t\cos(t) \right\rangle.$$

Find the arclenth along this curve between (0,0,0) and $(0,\frac{8}{3}\pi^{3/2},2\pi)$.

3. Consider the curve parameterized by

$$\mathbf{r}(t) = \left\langle t^2, t^3 - t, t \right\rangle.$$

Find the curvature as a function of t.

4. Suppose that S is a surface that contains the two curves given by

$$\mathbf{r}_{1}(t) = \langle t \cos(t) - 1, t^{2} + t + 1, 2e^{t} \rangle$$
$$\mathbf{r}_{2}(t) = \langle \ln(t) - t, \sqrt{t}, \frac{2}{t} \rangle$$

Find an equation for the tangent plane to S at the point (-1, 1, 2).

5. Suppose that f(x, y) has continuous second partial derivatives, and that

$$g(u, v) = f(u^2 + v^2, u^2 - v^2).$$

Suppose that the derivatives of f(x, y) are given in the following table. Each row gives the value of f and its derivatives at a specified point $f_{f_{res}}$ $f_{f_{res}}$ $f_{f_{res}}$ $f_{f_{res}}$ $f_{f_{res}}$ $f_{f_{res}}$

		J	Jx	Jy	Jxx	Jxy	Jyy
(x,y).	(1, 1)	1	2	0	-1	1	3
	(2, 0)	0	-1	1	2	0	1

Find the value of $g_{uu}(1,1)$.

6. Let $f(x, y, z) = xe^{xyz}$.

- (a) In what direction is f(x, y, z) increasing the most rapidly near (1, 1, 1)? How quickly is it increasing in this direction?
- (b) Find an equation for the tangent plane to f(x, y, z) = e at the point (1, 1, 1).
- 7. Let $f(x,y) = x^2 4xy + 2y^4$. Find the critical points of f and determine which are local minima, local maxima or saddle points.