Math 240 - Practice Exam 1

1. Find the distance between the lines

$$
\begin{aligned}
& L_{1}:\langle t-1, t+1,2 t\rangle \\
& L_{2}:\langle 2 t+1,0, t-1\rangle
\end{aligned}
$$

2. Consider the curve parameterized by

$$
\mathbf{r}(t)=\left\langle t \sin (t), \frac{2 \sqrt{2}}{3} t^{3 / 2}, t \cos (t)\right\rangle
$$

Find the arclenth along this curve between $(0,0,0)$ and $\left(0, \frac{8}{3} \pi^{3 / 2}, 2 \pi\right)$.
3. Consider the curve parameterized by

$$
\mathbf{r}(t)=\left\langle t^{2}, t^{3}-t, t\right\rangle
$$

Find the curvature as a function of t.
4. Suppose that S is a surface that contains the two curves given by

$$
\begin{aligned}
& \mathbf{r}_{1}(t)=\left\langle t \cos (t)-1, t^{2}+t+1,2 e^{t}\right\rangle \\
& \mathbf{r}_{2}(t)=\left\langle\ln (t)-t, \sqrt{t}, \frac{2}{t}\right\rangle
\end{aligned}
$$

Find an equation for the tangent plane to S at the point $(-1,1,2)$.
5. Suppose that $f(x, y)$ has continuous second partial derivatives, and that

$$
g(u, v)=f\left(u^{2}+v^{2}, u^{2}-v^{2}\right)
$$

Suppose that the derivatives of $f(x, y)$ are given in the following table. Each row gives the value of f and its derivatives at a specified point

$(x, y) .$| | f | f_{x} | f_{y} | $f_{x x}$ | $f_{x y}$ | $f_{y y}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $(1,1)$ | 1 | 2 | 0 | -1 | 1 |
| 3 | | | | | | |
| | $(2,0)$ | 0 | -1 | 1 | 2 | 0 |

Find the value of $g_{u u}(1,1)$.
6. Let $f(x, y, z)=x e^{x y z}$.
(a) In what direction is $f(x, y, z)$ increasing the most rapidly near $(1,1,1)$? How quickly is it increasing in this direction?
(b) Find an equation for the tangent plane to $f(x, y, z)=e$ at the point $(1,1,1)$.
7. Let $f(x, y)=x^{2}-4 x y+2 y^{4}$. Find the critical points of f and determine which are local minima, local maxima or saddle points.

