Math 240 - Exam 2 Solutions

1. (10 points) Write down a double integral that gives the volume of the region that is bounded above by the surface $z=1-x^{4}-y^{4}$ and below by the $x y$-plane. You do not need to evaluate the integral.

Solution.

$$
\int_{-1}^{1} \int_{-\sqrt[4]{1-x^{4}}}^{\sqrt[4]{1-x^{4}}} 1-x^{4}-y^{4} d y d x
$$

2. (15 points) Find the area of the region contained within the curve $r=1-\cos (\theta)$ (this is called a cardoid).
Solution.

$$
\int_{0}^{2 \pi} \int_{0}^{1-\cos (\theta)} r d r d \theta=\frac{1}{2} \int_{0}^{2 \pi}(1-\cos (\theta))^{2} d \theta=\frac{3 \pi}{2}
$$

3. (20 points) A metal hubcap is modeled as the region bounded below by the plane $z=1$ and above by the sphere $x^{2}+y^{2}+z^{2}=2$, with density given by the function $\frac{2}{\sqrt{x^{2}+y^{2}+z^{2}}}$. Find its mass.
Solution. The intersection of these two surfaces occurs where $x^{2}+y^{2}=1($ ie $r=1)$ and $z=1$, ie where $\phi=\pi / 4$ in spherical coordinates. Thus the mass is given by

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{1 / \cos (\phi)}^{\sqrt{2}} \frac{2}{\rho} \rho^{2} \sin (\phi) d \rho d \phi d \theta & =2 \pi \int_{0}^{\pi / 4}\left(2-\frac{1}{\cos ^{2}(\phi)}\right) \sin (\phi) d \phi \\
& =2 \pi\left[-2 \cos (\phi)-\frac{1}{\cos (\phi)}\right]_{0}^{\pi / 4} \\
& =2 \pi(3-2 \sqrt{2})
\end{aligned}
$$

4. (15 points) Let R be the region outside the cylinder $x^{2}+y^{2}=1$ and inside the sphere $x^{2}+y^{2}+z^{2}=2$. Provide limits of integration in cylindrical and spherical coordinates.

$$
\iiint_{R} f(x, y, z) d V=\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} ? \quad d \rho d \phi d \theta=\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} ? d z d r d \theta
$$

Solution.

$$
\begin{aligned}
\iiint_{R} f(x, y, z) d V & =\int_{0}^{2 \pi} \int_{\pi / 4}^{3 \pi / 4} \int_{1 / \sin (\phi)}^{\sqrt{2}} f(\rho \cos (\theta) \sin (\phi), \rho \sin (\theta) \sin (\phi), \rho \cos (\phi)) \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{1}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}-y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} f(r \cos (\theta), r \sin (\theta), z) r d z d r d \theta
\end{aligned}
$$

5. (20 points) Let R be the square with vertices $(0,0),(1,1),(2,0)$ and $(1,-1)$. Using an appropriate change of variables, evaluate

$$
\iint_{R}\left(x^{2}-y^{2}\right) e^{x^{2}-y^{2}} d A
$$

Solution. The square has edges with equations

$$
\begin{aligned}
& x+y=0 \\
& x+y=2 \\
& x-y=0 \\
& x-y=2
\end{aligned}
$$

suggesting that we use $u=x+y$ and $v=x-y$. Solving for x and y we have $x=\frac{u+v}{2}$ and $y=\frac{u-v}{2}$ and the Jacobian is $\left|\operatorname{det}\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2\end{array}\right)\right|=\frac{1}{2}$. So

$$
\iint_{R}\left(x^{2}-y^{2}\right) e^{x^{2}-y^{2}} d A=\frac{1}{2} \int_{0}^{2} \int_{0}^{2} u v e^{u v} d u d v
$$

This integral does not have a closed form expression using elementary functions. I apologize; everyone who got to this stage received full credit.
6. (20 points) Find the maximum and minimum values of

$$
f(x, y, z)=x y z
$$

subject to the constraint that

$$
x^{2}+y^{2}+2 z^{2}=3
$$

Solution. Using Lagrange multipliers we get the system

$$
\begin{aligned}
y z & =2 \lambda x \\
x z & =2 \lambda y \\
x y & =4 \lambda z \\
x^{2}+y^{2}+2 z^{2} & =3 .
\end{aligned}
$$

Multiplying the first equation by x, the second by y and the third by z yields $x^{2}=y^{2}=2 z^{2}$, and by the fourth equation they must all equal 1. Thus the solutions are $\left(\pm 1, \pm 1, \pm \frac{\sqrt{2}}{2}\right)$. Multiplying these together, we see that the minimum value is $-\frac{\sqrt{2}}{2}$ and the maximum is $\frac{\sqrt{2}}{2}$.

