Math 240 (7:30pm section) - Exam 1 Solutions

1. Let $\mathbf{a}=\langle 2,6,3\rangle$ and $\mathbf{b}=\langle 2,1,2\rangle$.
(a) Find the scalar projection of \mathbf{a} onto \mathbf{b}. (6 pts)

Solution.

$$
\operatorname{comp}_{\mathbf{b}} \mathbf{a}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}=\frac{2 \cdot 2+6 \cdot 1+3 \cdot 2}{\sqrt{2^{2}+1^{2}+2^{2}}}=\frac{16}{3}
$$

(b) Find the cosine of the angle between \mathbf{a} and \mathbf{b}. (6 pts)

Solution.

$$
\cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=\frac{16}{3 \sqrt{2^{2}+6^{2}+3^{2}}}=\frac{16}{21}
$$

2. Let $f(x, y)=x^{2} e^{y}-y^{2} e^{x}$.
(a) Find an equation for the tangent plane to $z=f(x, y)$ at the point $(1,1,0)$. (6 pts)

Solution. The tangent plane is determined by the partial derivatives of f, so we compute

$$
\begin{aligned}
f_{x}(x, y) & =2 x e^{y}-y^{2} e^{x} \\
f_{x}(1,1) & =2 e-e=e \\
f_{y}(x, y) & =x^{2} e^{y}-2 y e^{x} \\
f_{y}(1,1) & =e-2 e=-e
\end{aligned}
$$

The equation of the tangent plan is then

$$
\begin{aligned}
z-f(1,1) & =f_{x}(1,1)(x-1)+f_{y}(1,1)(y-1) \\
z & =e x-e y
\end{aligned}
$$

(b) Find the distance from this tangent plane to the point (2,2,2). (8 pts)

Solution. The simple way to do this is to use the formula: the distance from a point $\left(x_{0}, y_{0}, z_{0}\right)$ to a plane $a x+b y+c z+d=0$ is

$$
\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

This gives $\frac{|2 e-2 e-2|}{\sqrt{e^{2}+e^{2}+1}}=\frac{2}{\sqrt{2 e^{2}+1}}$.
Alternatively, you can construct a vector $\mathbf{v}=\langle 1,1,2\rangle$ from $(1,1,0)$ to $(2,2,2)$ (note that you can use any point on the plane instead of $(1,1,0)$, so $(0,0,0)$ would also work). The distance is then found by computing the absolute value of the scalar projection of \mathbf{v} onto a normal vector $\mathbf{n}=\langle e,-e,-1\rangle$. Note the z component here: you have to put the equation of the plane into the form $a x+b y+c z+d=0$ in order to extract the normal vector.
The scalar projection is

$$
\operatorname{comp}_{\mathbf{n}}(\mathbf{v})=\frac{|\mathbf{n} \cdot \mathbf{v}|}{|\mathbf{n}|}=\frac{2}{\sqrt{e^{2}+1}}
$$

3. Consider the curve parameterized by $\mathbf{r}(t)=\left\langle t^{3}+t^{2}, t^{3}-t^{2}, t^{2}\right\rangle$. Find the arclength along this curve between $(0,0,0)$ and $(2,0,1)$. (15 pts)
Solution. Arclength is given by $L=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t$, where $\mathbf{r}(a)=(0,0,0)$ and $\mathbf{r}(b)=(2,0,1)$. We find that $a=0$ and $b=1$ and

$$
\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}+2 t, 3 t^{2}-2 t, 2 t\right\rangle
$$

So, using the substitution $u=3 t^{2}+2$, we have

$$
\begin{aligned}
L & =\int_{0}^{1} \sqrt{\left(3 t^{2}+2 t\right)^{2}+\left(3 t^{2}-2 t\right)^{2}+(2 t)^{2}} d t \\
& =\int_{0}^{1} \sqrt{9 t^{4}+12 t^{3}+4 t^{2}+9 t^{4}-12 t^{3}+4 t^{2}+4 t^{2}} d t \\
& =\sqrt{6} \int_{0}^{1} t \sqrt{3 t^{2}+2} d t \\
& =\frac{\sqrt{6}}{6} \int_{2}^{5} \sqrt{u} d u \\
& =\frac{(5 \sqrt{5}-2 \sqrt{2}) \sqrt{6}}{9}
\end{aligned}
$$

4. Suppose that C is a curve that passes through the origin, where it has curvature $1 / 2$, unit tangent and unit normal vectors

$$
\begin{aligned}
& \mathbf{T}=\left\langle-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right\rangle, \\
& \mathbf{N}=\langle 0,0,1\rangle .
\end{aligned}
$$

(a) Find the binormal vector \mathbf{B} at the origin. (6 pts)

Solution. We have

$$
\begin{aligned}
\mathbf{B} & =\mathbf{T} \times \mathbf{N} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sqrt{2} / 2 & \sqrt{2} / 2 & 0 \\
0 & 0 & 1
\end{array}\right| \\
& =\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right\rangle .
\end{aligned}
$$

(b) Find the center of the osculating circle to C at the origin. (6 pts)

Solution. The osculating circle is contained within the plane spanned by \mathbf{T} and \mathbf{N}, and has the same tangent vector as the curve. Its center is thus in the direction of \mathbf{N}. Since the radius is the inverse of the curvature, it has radius 2 and thus center at $(0,0,2)$.
5. Suppose $f(u, v)$ is a differentiable function, $z(x, y)=f\left(x y, x^{2}+y^{2}\right)$ and that $f_{u}(2,5)=3$. If the level curve for $z(x, y)$ through $(1,2)$ is horizontal, find $f_{v}(2,5)$. Justify your answer. (15 pts)

Solution. If the level curve through $(1,2)$ is horizontal, that means that the gradient vector points up or down in the $x y$-plane and thus $z_{x}(1,2)=0$. Alternatively, since the level curve is horizontal, the value of $z(x, y)$ does not change with a change in the x-coordinate, so again we see that $z_{x}(1,2)=0$.

We now use the chain rule to find $z_{x}(1,2)$. Setting $u=x y$ and $v=x^{2}+y^{2}$ and noting that $u_{x}=y$ and $v_{x}=2 x$, we have

$$
\begin{aligned}
z_{x}(1,2) & =f_{u}(2,5) u_{x}(1,2)+f_{v}(2,5) v_{x}(1,2) \\
0 & =3 \cdot 2+f_{v}(2,5) \cdot 2
\end{aligned}
$$

Solving for $f_{v}(2,5)$ yields $f_{v}(2,5)=-3$.
6. Suppose that $f(x, y, z)$ is differentiable and that an equation for the tangent plane to the surface $f(x, y, z)=0$ at the point $(0,1,0)$ is given by

$$
x+y-2 z=1
$$

Suppose further that $D_{\mathbf{u}} f(0,1,0)=4 \sqrt{2}$ when $\mathbf{u}=\langle\sqrt{2} / 2, \sqrt{2} / 2,0\rangle$.
(a) Find ∇f at $(0,1,0)$. (8 pts)

Solution. The gradient vector is perpendicular to the level surface and thus parallel to the normal vector of the tangent plane. Thus

$$
\nabla f=\langle 1,1,-2\rangle t
$$

for some scalar t. We can determine t by the condition that $D_{\mathbf{u}} f(0,1,0)=4 \sqrt{2}$. We compute

$$
\begin{aligned}
D_{\mathbf{u}} f(0,1,0) & =\mathbf{u} \cdot \nabla f \\
& =\langle\sqrt{2} / 2, \sqrt{2} / 2,0\rangle \cdot\langle 1,1,-2\rangle t \\
& =\sqrt{2} t
\end{aligned}
$$

so $t=4$ and $\nabla f=\langle 4,4,-8\rangle$.
(b) If \mathbf{v} points in the direction of $\langle 0,1,1\rangle$, find $D_{\mathbf{v}} f(0,1,0)$. (6 pts)

Solution. With ∇f in hand, we again use the formula for the directional derivative. Note that we must scale \mathbf{v} so that it is a unit vector, ie $\mathbf{v}=\left\langle 0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle$. Then

$$
\begin{aligned}
D_{\mathbf{v}} f(0,1,0) & =\left\langle 0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle \cdot\langle 4,4,-8\rangle \\
& =2 \sqrt{2}-4 \sqrt{2} \\
& =-2 \sqrt{2}
\end{aligned}
$$

7. Let $f(x, y)=x^{3}+y^{3}-3 y^{2}-3 x y+3 x+3 y$. Find the critical points of f and determine which are local minima, local maxima, or saddle points. (18 pts)

Solution. We compute the partial derivatives of f and set them equal to 0 .

$$
\begin{align*}
& \frac{\partial f}{\partial x}=3 x^{2}-3 y+3=0 \tag{1}\\
& \frac{\partial f}{\partial y}=3 y^{2}-6 y-3 x+3=0 \tag{2}
\end{align*}
$$

Solving (2) for x gives

$$
\begin{equation*}
x=y^{2}-2 y+1 \tag{3}
\end{equation*}
$$

Substituting (3) into (1) yields

$$
\begin{array}{r}
3\left(y^{2}-2 y+1\right)-3 y+3=0 \\
3(y-1)(y-2)=0
\end{array}
$$

Thus $y=1$ or $y=2$. If $y=1$, substituting into (3) gives $x=1^{2}-2 \cdot 1+1=0$. If $y=2$, substituting into (3) gives $x=2^{2}-2 \cdot 2+1=1$. Thus the two critical points are $(0,1)$ and $(1,2)$. Note that you could also solve in the reverse order, solving (1) for y and substituting into (2).
We now need to determine which are local minima, local maxima or saddle points. To do so, we use the second derivative test. We compute

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =6 x \\
\frac{\partial^{2} f}{\partial x \partial y} & =-3 \\
\frac{\partial^{2} f}{\partial y^{2}} & =6 y-6 \\
D & =\left(\frac{\partial^{2} f}{\partial x^{2}}\right)\left(\frac{\partial^{2} f}{\partial y^{2}}\right)-\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2} \\
& =36 x(y-1)-9 .
\end{aligned}
$$

Evaluating D at $(0,1)$ gives $-9<0$ so $(0,1)$ is a saddle point. Evaluating D at $(1,2)$ gives $27>0$ and $\frac{\partial^{2} f}{\partial x^{2}}=6>0$, so $(1,2)$ is a local minimum.

