
Math 240 (7:30pm section) - Exam 1 Solutions

1. Let a = 〈2, 6, 3〉 and b = 〈2, 1, 2〉.

(a) Find the scalar projection of a onto b. (6 pts)

Solution.

compb a =
a · b
|b|

=
2 · 2 + 6 · 1 + 3 · 2√

22 + 12 + 22
=

16

3
.

(b) Find the cosine of the angle between a and b. (6 pts)

Solution.

cos(θ) =
a · b
|a||b|

=
16

3
√

22 + 62 + 32
=

16

21
.

2. Let f(x, y) = x2ey − y2ex.

(a) Find an equation for the tangent plane to z = f(x, y) at the point (1, 1, 0). (6 pts)

Solution. The tangent plane is determined by the partial derivatives of f , so we compute

fx(x, y) = 2xey − y2ex

fx(1, 1) = 2e− e = e

fy(x, y) = x2ey − 2yex

fy(1, 1) = e− 2e = −e.

The equation of the tangent plan is then

z − f(1, 1) = fx(1, 1)(x− 1) + fy(1, 1)(y − 1)

z = ex− ey

(b) Find the distance from this tangent plane to the point (2, 2, 2). (8 pts)

Solution. The simple way to do this is to use the formula: the distance from a point (x0, y0, z0)
to a plane ax+ by + cz + d = 0 is

|ax0 + by0 + cz0 + d|√
a2 + b2 + c2

.

This gives |2e−2e−2|√
e2+e2+1

= 2√
2e2+1

.

Alternatively, you can construct a vector v = 〈1, 1, 2〉 from (1, 1, 0) to (2, 2, 2) (note that you
can use any point on the plane instead of (1, 1, 0), so (0, 0, 0) would also work). The distance is
then found by computing the absolute value of the scalar projection of v onto a normal vector
n = 〈e,−e,−1〉. Note the z component here: you have to put the equation of the plane into the
form ax+ by + cz + d = 0 in order to extract the normal vector.

The scalar projection is

compn(v) =
|n · v|
|n|

=
2√

e2 + 1
.
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3. Consider the curve parameterized by r(t) = 〈t3 + t2, t3 − t2, t2〉. Find the arclength along this curve
between (0, 0, 0) and (2, 0, 1). (15 pts)

Solution. Arclength is given by L =
∫ b

a
|r′(t)|dt, where r(a) = (0, 0, 0) and r(b) = (2, 0, 1). We find

that a = 0 and b = 1 and
r′(t) = 〈3t2 + 2t, 3t2 − 2t, 2t〉.

So, using the substitution u = 3t2 + 2, we have

L =

∫ 1

0

√
(3t2 + 2t)2 + (3t2 − 2t)2 + (2t)2 dt

=

∫ 1

0

√
9t4 + 12t3 + 4t2 + 9t4 − 12t3 + 4t2 + 4t2 dt

=
√

6

∫ 1

0

t
√

3t2 + 2 dt

=

√
6

6

∫ 5

2

√
u du

=
(5
√

5− 2
√

2)
√

6

9

4. Suppose that C is a curve that passes through the origin, where it has curvature 1/2, unit tangent and
unit normal vectors

T =

〈
−
√

2

2
,

√
2

2
, 0

〉
,

N = 〈0, 0, 1〉.

(a) Find the binormal vector B at the origin. (6 pts)

Solution. We have

B = T×N

=

∣∣∣∣ i j k

−
√
2/2
√
2/2 0

0 0 1

∣∣∣∣
= 〈
√

2

2
,

√
2

2
, 0〉.

(b) Find the center of the osculating circle to C at the origin. (6 pts)

Solution. The osculating circle is contained within the plane spanned by T and N, and has the
same tangent vector as the curve. Its center is thus in the direction of N. Since the radius is the
inverse of the curvature, it has radius 2 and thus center at (0, 0, 2).

5. Suppose f(u, v) is a differentiable function, z(x, y) = f(xy, x2 + y2) and that fu(2, 5) = 3. If the level
curve for z(x, y) through (1, 2) is horizontal, find fv(2, 5). Justify your answer. (15 pts)

Solution. If the level curve through (1, 2) is horizontal, that means that the gradient vector points
up or down in the xy-plane and thus zx(1, 2) = 0. Alternatively, since the level curve is horizontal, the
value of z(x, y) does not change with a change in the x-coordinate, so again we see that zx(1, 2) = 0.
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We now use the chain rule to find zx(1, 2). Setting u = xy and v = x2 + y2 and noting that ux = y
and vx = 2x, we have

zx(1, 2) = fu(2, 5)ux(1, 2) + fv(2, 5)vx(1, 2)

0 = 3 · 2 + fv(2, 5) · 2.

Solving for fv(2, 5) yields fv(2, 5) = −3.

6. Suppose that f(x, y, z) is differentiable and that an equation for the tangent plane to the surface
f(x, y, z) = 0 at the point (0, 1, 0) is given by

x+ y − 2z = 1.

Suppose further that Duf(0, 1, 0) = 4
√

2 when u = 〈
√

2/2,
√

2/2, 0〉.

(a) Find ∇f at (0, 1, 0). (8 pts)

Solution. The gradient vector is perpendicular to the level surface and thus parallel to the normal
vector of the tangent plane. Thus

∇f = 〈1, 1,−2〉t

for some scalar t. We can determine t by the condition that Duf(0, 1, 0) = 4
√

2. We compute

Duf(0, 1, 0) = u · ∇f

= 〈
√

2/2,
√

2/2, 0〉 · 〈1, 1,−2〉t

=
√

2t,

so t = 4 and ∇f = 〈4, 4,−8〉.

(b) If v points in the direction of 〈0, 1, 1〉, find Dvf(0, 1, 0). (6 pts)

Solution. With ∇f in hand, we again use the formula for the directional derivative. Note that

we must scale v so that it is a unit vector, ie v = 〈0,
√
2
2 ,
√
2
2 〉. Then

Dvf(0, 1, 0) = 〈0,
√

2

2
,

√
2

2
〉 · 〈4, 4,−8〉

= 2
√

2− 4
√

2

= −2
√

2.

7. Let f(x, y) = x3 + y3 − 3y2 − 3xy + 3x + 3y. Find the critical points of f and determine which are
local minima, local maxima, or saddle points. (18 pts)

Solution. We compute the partial derivatives of f and set them equal to 0.

∂f

∂x
= 3x2 − 3y + 3 = 0 (1)

∂f

∂y
= 3y2 − 6y − 3x+ 3 = 0. (2)

Solving (2) for x gives
x = y2 − 2y + 1. (3)

Substituting (3) into (1) yields

3(y2 − 2y + 1)− 3y + 3 = 0

3(y − 1)(y − 2) = 0
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Thus y = 1 or y = 2. If y = 1, substituting into (3) gives x = 12 − 2 · 1 + 1 = 0. If y = 2, substituting
into (3) gives x = 22 − 2 · 2 + 1 = 1. Thus the two critical points are (0, 1) and (1, 2). Note that you
could also solve in the reverse order, solving (1) for y and substituting into (2).

We now need to determine which are local minima, local maxima or saddle points. To do so, we use
the second derivative test. We compute

∂2f

∂x2
= 6x

∂2f

∂x∂y
= −3

∂2f

∂y2
= 6y − 6

D =

(
∂2f

∂x2

)(
∂2f

∂y2

)
−
(
∂2f

∂x∂y

)2

= 36x(y − 1)− 9.

Evaluating D at (0, 1) gives −9 < 0 so (0, 1) is a saddle point. Evaluating D at (1, 2) gives 27 > 0 and
∂2f
∂x2 = 6 > 0, so (1, 2) is a local minimum.
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