Math 220 - Practice Final (Spring 2008) Solutions

1. We write $y=\frac{x+1}{2 x+1}$ and solve for x :

$$
\begin{aligned}
(2 x+1) y & =x+1 \\
2 x y-x+y-1 & =0 \\
(2 y-1) x & =1-y \\
x & =\frac{1-y}{2 y-1} .
\end{aligned}
$$

So $f^{-1}(x)=\frac{1-x}{2 x-1}$.
3. The derivative at $x=0$ is

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} & =\frac{|h| \sqrt[3]{h}-|0| \sqrt[3]{0}}{h} \\
& =\lim _{h \rightarrow 0} \frac{|h|}{h} \sqrt[3]{h}
\end{aligned}
$$

When $h>0, \frac{|h|}{h}=1$ and $\sqrt[3]{h}$ tends to 0 as $h \rightarrow 0$. When $h<0, \frac{|h|}{h}=-1$ and $-\sqrt[3]{h}$ also tends to 0 as $h \rightarrow 0$. Therefore the limit exists, and $f(x)$ is differentiable at 0 with $f^{\prime}(0)=0$.
4. (a) $f^{\prime}(x)=20 \cos (5 x)+\frac{2}{3 \sqrt[3]{x^{5}}}+\frac{1}{x}$.
(b) $g^{\prime}(x)=\frac{2 e^{2 x}\left(1+x^{2}\right)-2 x e^{2 x}}{\left(1+x^{2}\right)^{2}}=\frac{2\left(1-x+x^{2}\right) e^{2 x}}{\left(1+x^{2}\right)^{2}}$.
(c) $y^{\prime}=3 x^{2} \tan ^{-1}(4 x)+\frac{4 x^{3}}{1+16 x^{2}}$.
(d) $y=e^{\ln (x+1) x}$ so $y^{\prime}=\left(\frac{x}{x+1}+\ln (x+1)\right)(x+1)^{x}$. You can also use logarithmic differentiation.
(e) $f^{\prime}(x)=\frac{\sin (x)}{x^{3}+2}$.
5. We use implicit differentiation to get

$$
2 x+4 y+4 x y^{\prime}+3 y^{2} y^{\prime}=0
$$

Solving for y^{\prime} and substituting $x=2$ and $y=1$,

$$
\begin{aligned}
y^{\prime}\left(4 x+3 y^{2}\right) & =-2 x-4 y \\
y^{\prime}(8+3) & =-4-4 \\
y^{\prime} & =-\frac{8}{11}
\end{aligned}
$$

Using the point-slope equation of the line passing through $(2,1)$ with slope $-\frac{8}{11}$, we get

$$
y-1=-\frac{8}{11}(x-2)
$$

6. (a) As $x \rightarrow \infty, e^{-x}$ goes to 0 faster than x goes to infinity, so $\lim _{x \rightarrow \infty} f(x)=0$. There are no other vertical or horizontal asymptotes.
(b) $f^{\prime}(x)=e^{-x}-x e^{-x}=(1-x) e^{-x}$, which is negative when $x>1$ and positive when $x<1$. So $f(x)$ is increasing for $x<1$ and decreasing for $x>1$.
(c) There is a critical point at $x=1$, which is a local maximum by the first derivative test.
(d) Differentiating again, $f^{\prime \prime}(x)=-e^{-x}-(1-x) e^{-x}=(x-2) e^{-x}$. So $f(x)$ is concave up for $x>2$ and concave down for $x<2$, with an inflection point at $x=2$.
(e) Using the points $(0,0)$ and $(1,1 / e)$, we get the following graph:

7. We have $A=L W$. Differentiating with respect to time,

$$
A^{\prime}=L^{\prime} W+W^{\prime} L=8 \cdot 10+3 \cdot 20=140
$$

So the area is increasing at a rate of 140 square centimeters per second.
8. Differentiating,

$$
f^{\prime}(x)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=4 x(x-1)(x+1)
$$

We compute the value of $f(x)$ at the three critical points 0,1 and -1 , and at the endpoints of the interval, -2 and 3 .

$$
\begin{aligned}
f(-2) & =16-8+3=11 \\
f(-1) & =1-2+3=2 \\
f(0) & =0-0+3=3 \\
f(1) & =1-2+3=2 \\
f(3) & =81-18+3=66 .
\end{aligned}
$$

So the absolute minimum is 2 and the absolute maximum is 66 .
9. The picture is

So the area is

$$
A=2 x y
$$

and the fact that (x, y) lies on the parabola implies that $y=16-x^{2}$. Thus

$$
A=2 x\left(16-x^{2}\right)
$$

Differentiating, we have

$$
0=32-6 x^{2}
$$

so $x=\frac{4}{\sqrt{3}}$ and $y=16-x^{2}=\frac{32}{3}$. So the largest rectangle has width $2 x=\frac{8}{\sqrt{3}}$ and height $\frac{32}{3}$.
10. Draw the tangent line to the curve above x_{1}, and x_{2} will be the intersection of that tangent line with the x-axis. Repeat to get x_{3} and x_{4}.
11. The linear approximation near $a=1$ is

$$
\begin{aligned}
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =\sqrt[9]{a}+\frac{1}{9} a^{-8 / 9}(x-a) \\
& =1+\frac{1}{9}(x-1)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\sqrt[9]{1.1} & \approx L(1.1) \\
& =1+0.1 / 9 \\
& \approx 1.011111
\end{aligned}
$$

12. (a)

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x^{2}-4} & =\lim _{x \rightarrow 2^{-}} \frac{2-x}{x^{2}-4} \\
& =\lim _{x \rightarrow 2^{-}} \frac{-1}{x+2} \\
& =-\frac{1}{4}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1} & =\lim _{x \rightarrow \infty} \frac{3-1 / x-2 / x^{2}}{5+4 / x+1 / x^{2}} \\
& =\frac{3}{5}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (6 x)}{\ln (x+1)} & =\lim _{x \rightarrow 0} \frac{6 \cos (6 x)}{1 /(x+1)} \\
& =6
\end{aligned}
$$

by L'Hospital's rule. Note that we need to check that $\frac{\sin (6 \cdot 0)}{\ln (0+1)}=\frac{0}{0}$, so this is an indeterminate form where L'Hospital's rule applies.
(d) Since

$$
\frac{1}{x}-\frac{1}{\sin (x)}=\frac{\sin (x)-x}{x \sin (x)}
$$

and both numerator and denominator evaluate to 0 when $x=0$, we may use L'Hospital's rule. Differentiating top and bottom, we get

$$
\frac{\cos (x)-1}{\sin (x)+x \cos (x)}
$$

Again, both numerator and denominator evaluate to 0 so we apply L'Hospital's rule again.

$$
\frac{-\sin (x)}{2 \cos (x)-x \sin (x)}
$$

evaluates to $\frac{0}{2}$, so

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin (x)}\right)=0
$$

(e) This limit is of indeterminate form 1^{∞}, so we need to take the logarithm and apply L'Hospital's rule. The natural \log is

$$
\frac{\ln (1+3 x)}{x}
$$

and differentiating numerator and denominator yields

$$
\frac{3 /(1+3 x)}{1}
$$

Evaluating at $x=0$ gives 3, so the original limit is e^{3}.
13. We integrate to find that $f^{\prime}(t)=2 e^{t}-3 \cos (t)+C$, and integrate again to get

$$
f(t)=2 e^{t}-3 \sin (t)+C t+D
$$

Evaluating at 0 we get $0=f(0)=2+D$, so $D=-2$. Evaluating at π we get $0=f(\pi)=2 e^{\pi}+C \pi-2$, so $C=\frac{2-e^{\pi}}{\pi}$. Thus

$$
f(t)=2 e^{t}-3 \sin (t)+\frac{2-e^{\pi}}{\pi} t-2
$$

14. There are four intervals, with midpoints at $1.5,2.5,3.5$ and 4.5 . The relevant Riemann sum is

$$
\frac{1}{(1.5)^{3}+1}+\frac{1}{(2.5)^{3}+1}+\frac{1}{(3.5)^{3}+1}+\frac{1}{(4.5)^{3}+1} .
$$

15. (a)

$$
\begin{aligned}
\int_{1}^{9} \frac{3 x-1}{\sqrt{x}} d x & =\int_{1}^{9} 3 x^{1 / 2}-x^{-1 / 2} d x \\
& =\left[2 x^{3 / 2}-2 x^{1 / 2}\right]_{1}^{9} \\
& =(2 \cdot 27-2 \cdot 3)-(2-2) \\
& =48
\end{aligned}
$$

(b) Using substitution with $u=4+t^{2}$,

$$
\begin{aligned}
\int_{0}^{2} t \sqrt{4+t^{2}} d t & =\frac{1}{2} \int_{4}^{8} \sqrt{u} d u \\
& =\left[\frac{1}{3} u^{3 / 2}\right]_{4}^{8} \\
& =\frac{16 \sqrt{2}-8}{3}
\end{aligned}
$$

(c) This is the area of a semicircle of radius 2 , which is 2π.
16. (a) Using substitution with $u=\ln (x)$ and $d u=\frac{d x}{x}$,

$$
\begin{aligned}
\int \frac{\ln (x)}{x} d x & =\int u d u \\
& =\frac{u^{2}}{2}+C \\
& =\frac{\ln (x)^{2}}{2}+C
\end{aligned}
$$

(b) Using integration by parts with $u=\ln (x)$ and $d v=x d x$,

$$
\begin{aligned}
\int x \ln (x) d x & =\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \int x d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{4} x^{2}+C
\end{aligned}
$$

(c) Using the identity $\sin ^{3}(x)=\sin (x)\left(1-\cos ^{2}(x)\right)$ and the substitution $u=\cos (x)$,

$$
\begin{aligned}
\int \sin ^{3}(x) d x & =\int \sin (x)-\cos ^{2}(x) \sin (x) d x \\
& =-\cos (x)+\int u^{2} d u \\
& =-\cos (x)+\frac{1}{3} \cos ^{3}(x)+C
\end{aligned}
$$

