MATH 220 Final Exam Sample 1

1) Find the inverse function $f^{-1}(x)$ of $f(x)=\frac{x+1}{2 x+1}$
2) Eliminate the parameter to find a Cartesian Equation of the curve $x=2-3 t, \quad y=4-t^{2}$. Identify the Cartesian Curve.
3) Given the function $f(x)=|x| x^{\frac{1}{3}}$, use the Definition of the Derivative to decide whether $f(x)$ is differentiable at $x=0$, and if so, find $f^{\prime}(0)$.
4) Find the derivatives of the following functions. It is not necessary to simplify your answers.
a) $f(x)=4 \sin (5 x)-\frac{1}{\sqrt[3]{x^{2}}}+\ln (3 x)$
b) $g(x)=\frac{e^{2 x}}{1+x^{2}}$
c) $y=x^{3} \tan ^{-1}(4 x)$
d) $y=(x+1)^{x}$
e) $h(t)=\ln \left[(3 t+2)^{5}(t-4)\right]$
f) $f(x)=\int_{0}^{x} \frac{\sin t d t}{t^{3}+2}$
5) Find an equation of the tangent line to the curve

$$
x^{2}+4 x y+y^{3}=13 \quad \text { at the point } \quad(2,1)
$$

6) Consider the function $f(x)=x e^{-x}$.
a) Find all horizontal and vertical asymptotes, if any.
b) Determine on what intervals $f(x)$ is increasing or decreasing.
c) Determine all local maximum and minimum values.
d) Determine on what intervals $f(x)$ is concave up and concave down, and determine all inflection points, if any.
e) Sketch the graph of $f(x)$.
7) The length of a rectangle is increasing at a rate of $8 \mathrm{~cm} / \mathrm{sec}$ and its width is increasing ata rate of $3 \mathrm{~cm} / \mathrm{sec}$. When the length is 20 cm and the width is 10 cm , how fast is the area of the rectangle increasing?
8) Find the absolute maximum and the absolute minimum values of $f(x)=x^{4}-2 x^{2}+3$ on the closed interval $[-2,3]$.
9) A rectangle has two its vertices on the x-axis and the other two on the graph of the parabola $y=16-x^{2}$. Of all possible rectangles, find the dimensions of the one with maximum area.
10) We use Newton's Method to find the approximate value of the solution of the equation $f(x)=0$. The graph of the function f and the position of x_{1} is shown. Draw on the same picture the positions of x_{2}, x_{3}, and x_{4}.

11) Find the linear approximation for the function $f(x)=\sqrt[9]{x}$ at $a=1$ and use it to approximate $\sqrt[9]{1.1}$.
12. Evaluate the following limits. Show your work!
a) $\lim _{x \rightarrow 2-} \frac{|x-2|}{x^{2}-4}$
b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}$
c) $\lim _{x \rightarrow 0} \frac{\sin (6 x)}{\ln (x+1)}$
d) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$
e) $\lim _{x \rightarrow 0+}(1+3 x)^{1 / x}$
13. Given $f^{\prime \prime}(t)=2 e^{t}+3 \sin t, f(0)=0, f(\pi)=0$. Find $f(t)$.
14. Use the Midpoint Rule with $N=4$ to approximate $\int_{1}^{5} \frac{1}{\sqrt{x^{3}+1}} d x$. DO NOT SIMPLIFY YOUR ANSWER!
15. Evaluate the following definite integrals.
a) $\int_{1}^{9} \frac{3 x-1}{\sqrt{x}} d x$.
b) $\int_{0}^{2} t \sqrt{4+t^{2}} d t$.
c) $\int_{-2}^{2} \sqrt{4-x^{2}} d x$. (HINT: Use Geometry!)
16. Evaluate the following indefinite integrals.
a) $\int \frac{\ln x}{x} d x$.
b) $\int x \ln x d x$.
c) $\int \sin ^{3} x d x$.
