
Math 220 - Practice Final (Spring 2007) Solutions

1. (a) 22 log2 3+log2 5 =
(
2log2 3

)2 · (2log2 5
)

= 32 · 5 = 45.

(b) We let y = x+1
x−1 and solve for x:

y(x− 1) = x+ 1

xy − x− y − 1 = 0

x(y − 1) = y + 1

x =
y + 1

y − 1
.

So the inverse function is f−1(x) = x+1
x−1 , which happens to be equal to f(x) (note that the graph

of f(x) is symmetric about the line y = x).

(d) The derivative at x = 1 is 2x = 2, so the tangent line has slope 2 and equation y − 1 = 2(x− 1).

2. (a)

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

h21+h
√

1 + (1 + h)2 − 0 · 2 ·
√

2

h

= lim
h→0

21+h
√

1 + (1 + h)2

= 2
√

2.

(b) The graph of this function is a semicircle around the point (0, 2), so the area between it and the
x-axis is the sum of a semicircle of radius 1 and a square of side length 2. This area is 4 + π

2 .

(c) We integrate the velocity function to get s(t) = t + t2 + C. Since s(0) = 0, we have C = 0 and
s(t) = t+ t2.

(d) We make the substitution u = x − π
2 and use the identities cos(x) = − sin(x − π

2 ) and sin(x) =
cos(x− π

2 ): ∫ π

0

cos(x)

1 + sin2(x) + sin4(x)
dx =

∫ π/2

−pi/2

− sin(u)

1 + cos2(u) + cos4(u)

= 0

since the integrand is an odd function and the interval is of the form [−a, a].

3. (a)

lim
x→2−

|x− 2|
x2 − 4

= lim
x→2−

2− x
x2 − 4

= lim
x→2−

−1

x+ 2

= −1

4

1



(b) Since the numerator and denominator both evaluate to 0, L’Hospital’s rule applies.

lim
x→0

ex − 1

x
= lim
x→0

ex

1

= 1.

(c) Since
1

x
− 1

sin(x)
=

sin(x)− x
x sin(x)

and both numerator and denominator evaluate to 0 when x = 0, we may use L’Hospital’s rule.
Differentiating top and bottom, we get

cos(x)− 1

sin(x) + x cos(x)
.

Again, both numerator and denominator evaluate to 0 so we apply L’Hospital’s rule again.

− sin(x)

2 cos(x)− x sin(x)

evaluates to 0
2 , so

lim
x→0

(
1

x
− 1

sin(x)

)
= 0.

(d) This limit is of indeterminate form 1∞, so we need to take the logarithm and apply L’Hospital’s
rule. The natural log is

ln(1 + x)

x
,

and differentiating numerator and denominator yields

1/(1 + x)

1
.

Evaluating at x = 0 gives 1, so the original limit is e1 = e.

4. (a) Using the chain rule,

h′(1) = f ′(g(1))g′(1)

= f ′(3)g′(1)

= 6 · 5
= 30.

Using the product rule,

k′(1) = f ′(1)g(1) + f(1)g′(1)

= 4 · 3 + 2 · 4
= 20.

(b) When x = 2, we observe that y = 1 is a solution to y + y3 = 2 (note that this is the only real
solution, since y3 +y−2 = (y−1)(y2 +y+2) and the discriminant of y2 +y+2 is 12−4 ·2 ·1 < 0).
Therefore y(2) = 1.
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We differentiate twice, yielding

1 = y′ + 3y2y′

0 = y′′ + 6yy′ + 3y2y′′.

Substituting y = 1 into the first equation gives

4y′ = 1,

and thus y′(2) = 1
4 . Substituting y = 1 and y′ = 1

4 into the second equation gives

4y′′ +
6

4
= 0,

and thus y′′(2) = − 3
8 .

5. (a) f ′(x) = ex + 2
x + 3 cos(x) + 4

1+x2 + 5√
1−x2

(b) g(x) = ex ln(x) so g′(x) = (ln(x) + 1)xx. You can also use logarithmic differentiation.

(c) h′(x) = − sin(
√

1 + x2) · x√
1+x2

(d) Let K(u) =
∫ u
0
et

2

dt. Then k(x) = K(u) with u = 2x, and k′(x) = K ′(u)u′(x) = e4x
2 · 2, using

the fundamental theorem of calculus and the chain rule.

6. (a) ∫ (
x2 +

2

x
+ 3 sin(x) + 4x +

5

1 + x2

)
dx =

x3

3
+ 2 ln(x)− 3 cos(x) +

4x

ln(4)
+ 5 tan−1(x) + C.

(b) With the substitution u = x2 + x+ 1,∫
(2x+ 1)(x2 + x+ 1)3 dx =

∫
u3 du

=
u4

4
+ C

=
1

4
(x2 + x+ 1)4 + C.

(c) Using integration by parts with u = x and dv = cos(x)dx,∫
x cos(x) dx = x sin(x)−

∫
sin(x) dx

= x sin(x) + cos(x) + C.

7. (a) We are given the equations

V = πr2h

A = 2πr2 + 2πrh

A = 600π.

With four variables and three equations, we are ready to proceed, solving for V in terms of a
single variable r. We solve the equation

2πr2 + 2πrh = 600π
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for h, giving h = 300−r2
r and thus

V = πr(300− r2).

Differentiating and setting V ′ = 0, we get

300π − 3πr2 = 0,

so r = 10. The volume is then V = π · 10 · (300− 100) = 2000π.

(b) Suppose that the car is traveling along the positive x-axis (with coordinate x) and the truck along
the positive y-axis (with coordinate y). Then the distance between them is

D =
√
x2 + y2.

Differentiating, we get that

dD

dt
=
xdxdt + y dydt
x2 + y2

.

We’re given the following information in the problem:

x = 3

y = 4

dx

dt
= 100

dy

dt
= 80.

Therefore

dD

dt
=

3 · 100 + 4 · 80√
32 + 42

=
620

5
= 124.

So they are separating at a rate of 124 miles per hour.

8. Newton’s method iterates with xi+1 = xi − f(xi)
f ′(xi)

. Here, f(x) = x3 − x+ 2 and f ′(x) = 3x2 − 1.

So, starting from x0 = 0,

x1 = x0 −
f(x0)

f ′(x0)

= 0− 2

−1

= 2

x2 = x1 −
f(x1)

f ′(x1)

= 2− 8

11

=
14

11
.
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The linear approximation is given by the tangent line:

L(x) = f(a) + f ′(a)(x− a)

= 11/10 +
1

10
1−9/10(x− 1)

= 1 +
1

10
(x− 1)

1.11/10 ≈ L(1.1)

= 1 +
1

10
(1.1− 1)

= 1.01.

(a)(b) There is a typo in this problem: it should be ci = 1
2 (xi−1 + xi). With this change,

R4 =

4∑
i=1

f(ci)(xi − xi−1)

=

4∑
i=1

c2i (2i− 2(i− 1))

= 2

4∑
i=1

c2i

= 2(1 + 9 + 25 + 49)

= 168.

Note that this is quite close to the exact value of the integral, [x
3

3 ]80 = 170 2
3 .

9. (a) f(x) is increasing when f ′(x) > 0, which occurs when −1 < x < 1. It is decreasing when
f ′(x) < 0, which occurs when x < −1 or x > 1. The only local minimum is therefore at x = −1,
where f(x) = −1 and the only local maximum is at x = 1, where f(x) = 1. Here we use the first
derivative test to determine whether each point is a minimum or maximum, and we will see in
part (c) that these are also global extreme values.

(b) f(x) is concave up when f ′′(x) > 0, which occurs when x >
√

3 or −
√

3 < x < 0. Similarly, f(x)
is concave down when f ′′(x) < 0, which occurs when x < −

√
3 or 0 < x <

√
3.

(c) As x → ±∞, the exponent (1 − x2)/2 → −∞ and thus f(x) → 0 (either using L’Hospital’s rule
or the fact that exponentials dominate polynomials). Therefore y = 0 is a horizontal asymptote.

(d) Here’s the graph for comparison with your sketch.
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