Math 220 - Practice Final (Spring 2007) Solutions

1. (a) $2^{2 \log _{2} 3+\log _{2} 5}=\left(2^{\log _{2} 3}\right)^{2} \cdot\left(2^{\log _{2} 5}\right)=3^{2} \cdot 5=45$.
(b) We let $y=\frac{x+1}{x-1}$ and solve for x :

$$
\begin{aligned}
y(x-1) & =x+1 \\
x y-x-y-1 & =0 \\
x(y-1) & =y+1 \\
x & =\frac{y+1}{y-1} .
\end{aligned}
$$

So the inverse function is $f^{-1}(x)=\frac{x+1}{x-1}$, which happens to be equal to $f(x)$ (note that the graph of $f(x)$ is symmetric about the line $y=x$).
(d) The derivative at $x=1$ is $2 x=2$, so the tangent line has slope 2 and equation $y-1=2(x-1)$.
2. (a)

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h 2^{1+h} \sqrt{1+(1+h)^{2}}-0 \cdot 2 \cdot \sqrt{2}}{h} \\
& =\lim _{h \rightarrow 0} 2^{1+h} \sqrt{1+(1+h)^{2}} \\
& =2 \sqrt{2}
\end{aligned}
$$

(b) The graph of this function is a semicircle around the point $(0,2)$, so the area between it and the x-axis is the sum of a semicircle of radius 1 and a square of side length 2 . This area is $4+\frac{\pi}{2}$.
(c) We integrate the velocity function to get $s(t)=t+t^{2}+C$. Since $s(0)=0$, we have $C=0$ and $s(t)=t+t^{2}$.
(d) We make the substitution $u=x-\frac{\pi}{2}$ and use the identities $\cos (x)=-\sin \left(x-\frac{\pi}{2}\right)$ and $\sin (x)=$ $\cos \left(x-\frac{\pi}{2}\right):$

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\cos (x)}{1+\sin ^{2}(x)+\sin ^{4}(x)} d x & =\int_{-p i / 2}^{\pi / 2} \frac{-\sin (u)}{1+\cos ^{2}(u)+\cos ^{4}(u)} \\
& =0
\end{aligned}
$$

since the integrand is an odd function and the interval is of the form $[-a, a]$.
3. (a)

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x^{2}-4} & =\lim _{x \rightarrow 2^{-}} \frac{2-x}{x^{2}-4} \\
& =\lim _{x \rightarrow 2^{-}} \frac{-1}{x+2} \\
& =-\frac{1}{4}
\end{aligned}
$$

(b) Since the numerator and denominator both evaluate to 0 , L'Hospital's rule applies.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x} & =\lim _{x \rightarrow 0} \frac{e^{x}}{1} \\
& =1
\end{aligned}
$$

(c) Since

$$
\frac{1}{x}-\frac{1}{\sin (x)}=\frac{\sin (x)-x}{x \sin (x)}
$$

and both numerator and denominator evaluate to 0 when $x=0$, we may use L'Hospital's rule. Differentiating top and bottom, we get

$$
\frac{\cos (x)-1}{\sin (x)+x \cos (x)}
$$

Again, both numerator and denominator evaluate to 0 so we apply L'Hospital's rule again.

$$
\frac{-\sin (x)}{2 \cos (x)-x \sin (x)}
$$

evaluates to $\frac{0}{2}$, so

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin (x)}\right)=0
$$

(d) This limit is of indeterminate form 1^{∞}, so we need to take the logarithm and apply L'Hospital's rule. The natural \log is

$$
\frac{\ln (1+x)}{x}
$$

and differentiating numerator and denominator yields

$$
\frac{1 /(1+x)}{1}
$$

Evaluating at $x=0$ gives 1 , so the original limit is $e^{1}=e$.
4. (a) Using the chain rule,

$$
\begin{aligned}
h^{\prime}(1) & =f^{\prime}(g(1)) g^{\prime}(1) \\
& =f^{\prime}(3) g^{\prime}(1) \\
& =6 \cdot 5 \\
& =30
\end{aligned}
$$

Using the product rule,

$$
\begin{aligned}
k^{\prime}(1) & =f^{\prime}(1) g(1)+f(1) g^{\prime}(1) \\
& =4 \cdot 3+2 \cdot 4 \\
& =20
\end{aligned}
$$

(b) When $x=2$, we observe that $y=1$ is a solution to $y+y^{3}=2$ (note that this is the only real solution, since $y^{3}+y-2=(y-1)\left(y^{2}+y+2\right)$ and the discriminant of $y^{2}+y+2$ is $\left.1^{2}-4 \cdot 2 \cdot 1<0\right)$. Therefore $y(2)=1$.

We differentiate twice, yielding

$$
\begin{aligned}
& 1=y^{\prime}+3 y^{2} y^{\prime} \\
& 0=y^{\prime \prime}+6 y y^{\prime}+3 y^{2} y^{\prime \prime}
\end{aligned}
$$

Substituting $y=1$ into the first equation gives

$$
4 y^{\prime}=1
$$

and thus $y^{\prime}(2)=\frac{1}{4}$. Substituting $y=1$ and $y^{\prime}=\frac{1}{4}$ into the second equation gives

$$
4 y^{\prime \prime}+\frac{6}{4}=0
$$

and thus $y^{\prime \prime}(2)=-\frac{3}{8}$.
5. (a) $f^{\prime}(x)=e^{x}+\frac{2}{x}+3 \cos (x)+\frac{4}{1+x^{2}}+\frac{5}{\sqrt{1-x^{2}}}$
(b) $g(x)=e^{x \ln (x)}$ so $g^{\prime}(x)=(\ln (x)+1) x^{x}$. You can also use logarithmic differentiation.
(c) $h^{\prime}(x)=-\sin \left(\sqrt{1+x^{2}}\right) \cdot \frac{x}{\sqrt{1+x^{2}}}$
(d) Let $K(u)=\int_{0}^{u} e^{t^{2}} d t$. Then $k(x)=K(u)$ with $u=2 x$, and $k^{\prime}(x)=K^{\prime}(u) u^{\prime}(x)=e^{4 x^{2}} \cdot 2$, using the fundamental theorem of calculus and the chain rule.
6. (a)

$$
\int\left(x^{2}+\frac{2}{x}+3 \sin (x)+4^{x}+\frac{5}{1+x^{2}}\right) d x=\frac{x^{3}}{3}+2 \ln (x)-3 \cos (x)+\frac{4^{x}}{\ln (4)}+5 \tan ^{-1}(x)+C .
$$

(b) With the substitution $u=x^{2}+x+1$,

$$
\begin{aligned}
\int(2 x+1)\left(x^{2}+x+1\right)^{3} d x & =\int u^{3} d u \\
& =\frac{u^{4}}{4}+C \\
& =\frac{1}{4}\left(x^{2}+x+1\right)^{4}+C
\end{aligned}
$$

(c) Using integration by parts with $u=x$ and $d v=\cos (x) d x$,

$$
\begin{aligned}
\int x \cos (x) d x & =x \sin (x)-\int \sin (x) d x \\
& =x \sin (x)+\cos (x)+C
\end{aligned}
$$

7. (a) We are given the equations

$$
\begin{aligned}
& V=\pi r^{2} h \\
& A=2 \pi r^{2}+2 \pi r h \\
& A=600 \pi
\end{aligned}
$$

With four variables and three equations, we are ready to proceed, solving for V in terms of a single variable r. We solve the equation

$$
2 \pi r^{2}+2 \pi r h=600 \pi
$$

for h, giving $h=\frac{300-r^{2}}{r}$ and thus

$$
V=\pi r\left(300-r^{2}\right)
$$

Differentiating and setting $V^{\prime}=0$, we get

$$
300 \pi-3 \pi r^{2}=0
$$

so $r=10$. The volume is then $V=\pi \cdot 10 \cdot(300-100)=2000 \pi$.
(b) Suppose that the car is traveling along the positive x-axis (with coordinate x) and the truck along the positive y-axis (with coordinate y). Then the distance between them is

$$
D=\sqrt{x^{2}+y^{2}}
$$

Differentiating, we get that

$$
\frac{d D}{d t}=\frac{x \frac{d x}{d t}+y \frac{d y}{d t}}{x^{2}+y^{2}}
$$

We're given the following information in the problem:

$$
\begin{aligned}
x & =3 \\
y & =4 \\
\frac{d x}{d t} & =100 \\
\frac{d y}{d t} & =80
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{d D}{d t} & =\frac{3 \cdot 100+4 \cdot 80}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{620}{5} \\
& =124
\end{aligned}
$$

So they are separating at a rate of 124 miles per hour.
8. Newton's method iterates with $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$. Here, $f(x)=x^{3}-x+2$ and $f^{\prime}(x)=3 x^{2}-1$. So, starting from $x_{0}=0$,

$$
\begin{aligned}
x_{1} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& =0-\frac{2}{-1} \\
& =2 \\
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =2-\frac{8}{11} \\
& =\frac{14}{11} .
\end{aligned}
$$

The linear approximation is given by the tangent line:

$$
\begin{aligned}
L(x) & =f(a)+f^{\prime}(a)(x-a) \\
& =1^{1 / 10}+\frac{1}{10} 1^{-9 / 10}(x-1) \\
& =1+\frac{1}{10}(x-1) \\
1.1^{1 / 10} & \approx L(1.1) \\
& =1+\frac{1}{10}(1.1-1) \\
& =1.01
\end{aligned}
$$

(b) There is a typo in this problem: it should be $c_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$. With this change,

$$
\begin{aligned}
R_{4} & =\sum_{i=1}^{4} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{4} c_{i}^{2}(2 i-2(i-1)) \\
& =2 \sum_{i=1}^{4} c_{i}^{2} \\
& =2(1+9+25+49) \\
& =168
\end{aligned}
$$

Note that this is quite close to the exact value of the integral, $\left[\frac{x^{3}}{3}\right]_{0}^{8}=170 \frac{2}{3}$.
9. (a) $f(x)$ is increasing when $f^{\prime}(x)>0$, which occurs when $-1<x<1$. It is decreasing when $f^{\prime}(x)<0$, which occurs when $x<-1$ or $x>1$. The only local minimum is therefore at $x=-1$, where $f(x)=-1$ and the only local maximum is at $x=1$, where $f(x)=1$. Here we use the first derivative test to determine whether each point is a minimum or maximum, and we will see in part (c) that these are also global extreme values.
(b) $f(x)$ is concave up when $f^{\prime \prime}(x)>0$, which occurs when $x>\sqrt{3}$ or $-\sqrt{3}<x<0$. Similarly, $f(x)$ is concave down when $f^{\prime \prime}(x)<0$, which occurs when $x<-\sqrt{3}$ or $0<x<\sqrt{3}$.
(c) As $x \rightarrow \pm \infty$, the exponent $\left(1-x^{2}\right) / 2 \rightarrow-\infty$ and thus $f(x) \rightarrow 0$ (either using L'Hospital's rule or the fact that exponentials dominate polynomials). Therefore $y=0$ is a horizontal asymptote.
(d) Here's the graph for comparison with your sketch.

