Final Exam Practice

1. Basics (20 points)
(a) Simplify the expression $2^{2 \log _{2} 3+\log _{2} 5}$.
(b) Find the inverse function of $f(x)=\frac{x+1}{x-1}$.
(c) Eliminate the parameter t to find a Cartesian equation of the curve

$$
x=1+3 t, \quad y=2-t^{2} .
$$

(d) Find the equation of the line that is tangent to the curve $y=x^{2}$ at the point $(1,1)$.
2. Basics (25 points)
(a) Use $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ to find $f^{\prime}(1)$ where $f(x)=(x-1) 2^{x} \sqrt{1+x^{2}}$
(b) Using geometry, find $\int_{-1}^{1}\left(2+\sqrt{1-x^{2}}\right) d x$.
(c) Find the position function $s(t)$ of a particle that moves along a straight line with velocity function $v(t)=1+2 t$ and initial displacement $s(0)=0$.
(d) Evaluate the definite integral $\int_{0}^{\pi} \frac{\cos x}{1+\sin ^{2} x+\sin ^{4} x} d x$.
3. Find the following limits (25 points)
(a) $\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x^{2}-4}$
(b) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$
(c) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)$
(d) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$
4. Differentiation Techniques
(a) Suppose $f(1)=2, g(1)=3, f(3)=4, g(2)=5, f^{\prime}(1)=4, g^{\prime}(1)=5, f^{\prime}(3)=6$. Suppose $h(x)=f\left(g(x)\right.$ and $k(x)=f(x) g(x)$. Find $h^{\prime}(1)$ and $k^{\prime}(1)$.
(b) Let $y(x)$ be implicitly defined by $x=y+y^{3}$. Find $y(2), y^{\prime}(2)$ and $y^{\prime \prime}(2)$.
5. Find the derivative of the following functons: (20 points)
(a) $f(x)=e^{x}+2 \ln x+3 \sin x+4 \arctan x+5 \arcsin x$
(b) $g(x)=x^{x}$
(c) $h(x)=\cos \sqrt{1+x^{2}}$
(d) $k(x)=\int_{0}^{2 x} e^{t^{2}} d t$
6. Find the following integrals (20 points)
(a) $\int\left(x^{2}+\frac{2}{x}+3 \sin x+4^{x}+\frac{5}{1+x^{2}}\right) d x$
(b) $\int(2 x+1)\left(x^{2}+x+1\right)^{3} d x$
(c) $\int x \cos x d x$
(d) $\int \frac{1}{(2-x)(x+3)} d x$
7. Application of Derivatives (25 points)
(a) Find the maximum volume V of a circular cylindrical tin can that has a total surface area $A=600 \pi \mathrm{~cm}^{2}$. (Hint: If a tin can has base radius r and height h, then volume is $V=\pi r^{2} h$ and surface area $A=2 \pi r^{2}+2 \pi r h$.)
(b) A car is traveling east 100 mile/hour and a truck is traveling north 80 mile/hour. At a time moment when the car is 3 miles east of an intersection and the truck is 4 miles north of the same intersection, what is the relative speed of departing between the car and the truck?
8. Approximation (20 points)
(a) Consider the problem of finding a root of $x^{3}-x+2=0$. Using Newton's method and starting from the initial guess $x=0$, find the next two iterations.
(b) Find the linear approximation $L(x)$ for the function $f(x)=x^{1 / 10}$ around the point $a=1$ and use $L(x)$ to calculate approximately the numerical value of $1.1^{1 / 10}$.
(c) Find the Riemann sum $R_{4}=\sum_{i=1}^{4} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)$ for $\int_{0}^{8} x^{2} d x$ with regular partition points $x_{i}=2 i$ for $i=0,1,2,3,4$ and the middle point rule:
$c_{i}=\frac{1}{2}\left(x_{i-1}-x_{i}\right)$.
9. Plot Curve (20 points)

Let $f(x)=x e^{\left(1-x^{2}\right) / 2}$. Differentiation gives that

$$
f^{\prime}(x)=\left(1-x^{2}\right) e^{\left(1-x^{2}\right) / 2}, \quad \quad f^{\prime \prime}(x)=x\left(x^{2}-3\right) e^{\left(1-x^{2}\right) / 2}
$$

(a) Find the intervals where f is increasing or decreasing. Also find points of local or global minimum or maximum.
(b) Find intervals where f is concave up of concave down.
(c) Find any horizontal asymptotes.
(d) Sketch the curve $y=f(x)$ for $-\infty<x<\infty$.

