Math 220 Final Exam (part 1) Solutions

1. Evaluate each of the following limits, showing your work. If a limit has value $\pm \infty$, give that rather than "does not exist." (3 points each)
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$

Solution. This is a limit giving the derivative of $f(x)=\sqrt{x}$ at $x=1$. Since $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, the value of the limit is $f^{\prime}(1)=\frac{1}{2}$. Alternatively, you can use L'Hospital's rule.
(b) $\lim _{h \rightarrow 2^{+}} \frac{h^{2}-2}{h-2}$

Solution. As $h \rightarrow 2^{+}$, the numerator is positive and the denominator approaches 0 from above. Therefore the limit is ∞. Note that L'Hospital's rule does not apply since the limit of the numerator is not 0 .
(c) $\lim _{x \rightarrow 0}(1+\sin (2 x))^{1 / x}$

Solution. Let $f(x)=(1+\sin (2 x))^{1 / x}$. Taking logarithms,

$$
\ln (f)=\frac{\ln (1+\sin (2 x))}{x}
$$

Both numerator and denominator tend to 0, so L'Hospital's rule applies. Differentiating top and bottom, we get

$$
\frac{2 \cos (2 x) /(1+\sin (2 x))}{1}
$$

This tends to 2 as $x \rightarrow 0$. Since $\lim _{x \rightarrow 0} \ln (f(x))=2, \lim _{x \rightarrow 0} f(x)=e^{2}$.
(d) $\lim _{x \rightarrow \infty} x^{2} e^{-x} \sin (x)$

Solution. As $x \rightarrow \infty$, note that $x^{2} \rightarrow \infty, e^{-x} \rightarrow 0$ and $\sin (x)$ oscillates. Consider $x^{2} e^{-x}$. Either using L'Hospital's rule twice, or what we learned about limits of products of exponentials and polynomials, we see that $x^{2} e^{-x} \rightarrow 0$. Therefore $\lim _{x \rightarrow \infty} x^{2} e^{-x} \sin (x)=0$ as well. If you want to be more rigorous, you can use the Squeeze theorem.
2. Find the following derivatives. (3 points each)
(a) Find the derivative of

$$
f(x)=\frac{1+x^{3} e^{x}}{1-x^{2}}
$$

Solution. By the quotient rule and product rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{\left(3 x^{2} e^{x}+x^{3} e^{x}\right)\left(1-x^{2}\right)-\left(1+x^{3} e^{x}\right)(-2 x)}{\left(1-x^{2}\right)^{2}} \\
& =\frac{\left(-x^{5}-x^{4}+x^{3}+3 x^{2}\right) e^{x}+2 x}{\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

(b) Find the derivative of

$$
g(x)=\cosh (\cos (\ln |x|))
$$

Solution. Using the chain rule,

$$
g^{\prime}(x)=\sinh (\cos (\ln |x|))(-\sin (\ln |x|)) \cdot \frac{1}{x}
$$

(c) Find the derivative of

$$
h(x)=(2+\sin (x))^{x} .
$$

Solution. Using logarithmic differentiation,

$$
\begin{aligned}
\ln (h(x)) & =x \ln (2+\sin (x)) \\
\frac{h^{\prime}(x)}{h(x)} & =\ln (2+\sin (x))+\frac{x \cos (x)}{2+\sin (x)} \\
h^{\prime}(x) & =\left(\ln (2+\sin (x))+\frac{x \cos (x)}{2+\sin (x)}\right)(2+\sin (x))^{x} .
\end{aligned}
$$

You can also rewrite $h(x)=e^{x \ln (2+\sin (x)}$ and use the chain rule.
(d) Suppose that $y(x)$ satisfies

$$
3 x^{2} y^{3}-e^{y}=3-e
$$

and $y(1)=1$. Find $y^{\prime}(1)$.
Solution. Using implicit differentiation,

$$
\begin{aligned}
6 x y^{3}+9 x^{2} y^{2} y^{\prime}-e^{y} y^{\prime} & =0 \\
6+(9-e) y^{\prime}(1) & =0 \\
y^{\prime}(1) & =\frac{6}{e-9} .
\end{aligned}
$$

3. Let

$$
f(x)=\frac{1}{2} x^{2} e^{1-x^{2}}
$$

with derivatives

$$
\begin{aligned}
f^{\prime}(x) & =\left(x-x^{3}\right) e^{1-x^{2}} \\
f^{\prime \prime}(x) & =\left(2 x^{4}-5 x^{2}+1\right) e^{1-x^{2}}
\end{aligned}
$$

(a) Where is $f(x)$ increasing and where is it decreasing? Show your work. (3 points)

Solution. Note that $e^{1-x^{2}}$ is always positive.
$f(x)$ is increasing when $f^{\prime}(x)>0$, which occurs when $x-x^{3}=x(1-x)(1+x)>0$, which occurs for $x<-1$ and $0<x<1$.
$f(x)$ is decreasing when $f^{\prime}(x)<0$, which occurs when $x(1-x)(1+x)<0$, or $-1<x<0$ and $x>1$.
(b) Where is $f(x)$ concave up and where is it concave down? Show your work. (3 points)

Hint: The equation $2 x^{4}-5 x^{2}+1=0$ has solutions $\pm \frac{\sqrt{5 \pm \sqrt{17}}}{2}$.
Solution. $f(x)$ is concave up when $f^{\prime \prime}(x)>0$ and concave down when $f^{\prime \prime}(x)<0$. The roots of $f^{\prime \prime}(x)$ are approximately $-3 / 2,-1 / 2,1 / 2$, and $3 / 2$ (noting that $\sqrt{17} \approx \sqrt{16}=4$). Thus we can
compute

$$
\begin{aligned}
f^{\prime \prime}(-2) & =(32-20+1) e^{-3}>0 \\
f^{\prime \prime}(-1) & =(2-5+1)<0 \\
f^{\prime \prime}(0) & =(1) e^{1}>0 \\
f^{\prime \prime}(1) & =(2-5+1)<0 \\
f^{\prime \prime}(2) & =(32-20+1) e^{-3}>0 .
\end{aligned}
$$

Therefore $f(x)$ is concave up on $\left(-\infty,-\frac{\sqrt{5+\sqrt{17}}}{2}\right) \cup\left(-\frac{\sqrt{5-\sqrt{17}}}{2}, \frac{\sqrt{5-\sqrt{17}}}{2}\right) \cup\left(\frac{\sqrt{5+\sqrt{17}}}{2}, \infty\right)$ and concave down on $\left(-\frac{\sqrt{5+\sqrt{17}}}{2},-\frac{\sqrt{5-\sqrt{17}}}{2}\right) \cup\left(\frac{\sqrt{5-\sqrt{17}}}{2}, \frac{\sqrt{5+\sqrt{17}}}{2}\right)$.
(c) Where does $f(x)$ have local maxima and local minima? Show your work. (3 points)

Solution. The zeros of $f^{\prime}(x)$ are at $x=-1$, and $x=0$ and $x=1$. The first and third are maxima and the second is a minimum, all by the second derivative test and the computation in part (b).
(d) Which of the following is the graph of $f(x)$? (3 points)
(i)

(ii)

(iii)

(iv)

Solution. The answer is (iv), since that is the only graph with the correct pattern of maximum, minimum, maximum.
4. Find the absolute minimum and maximum values of $f(x)=\frac{1}{4} x^{4}-x^{3}-2 x^{2}+1$ on the interval $[-1,2]$. Show your work. (8 points)

Solution. The derivative is $f^{\prime}(x)=x^{3}-3 x^{2}-4 x=x(x-4)(x+1)$. The only two critical points within the interval are at $x=-1$ and $x=0$. Together with the endpoints, we need to compute

$$
\begin{aligned}
f(-1) & =\frac{1}{4}+1-2+1=\frac{1}{4} \\
f(0) & =1 \\
f(2) & =4-8-8+1=-11
\end{aligned}
$$

Thus the minimum value is -11 and the maximum is 1 .
5. Let $f(x)=2 x-\sin (x)$.
(a) Find $f^{-1}(2 \pi)$. Show your work. (4 points)

Solution. We need to solve $2 x-\sin (x)=2 \pi$. There's not an easy way to solve equations like this generally (though you can use Newton's method to approximate a solution). In this case, without the sine term we would have $x=\pi$. Since $\sin (\pi)=0, x=\pi$ is a solution (in fact, the only one). Thus $f^{-1}(2 \pi)=\pi$.
(b) Find $\left(f^{-1}\right)^{\prime}(2 \pi)$. Show your work. (4 points)

Solution. We have

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(2 \pi) & =\frac{1}{f^{\prime}\left(f^{-1}(2 \pi)\right.} \\
& =\frac{1}{f^{\prime}(\pi)} \\
& =\frac{1}{2-\cos (\pi)} \\
& =\frac{1}{3}
\end{aligned}
$$

6. The volume of a cube is increasing at a constant rate of 30 cubic meters per second. When the cube has volume 1000 cubic meters, how fast is its surface area increasing? (8 points)
Solution. If x is the side length of the cube ($x=10$ at the moment that $V=1000$), then $V=x^{3}$ and $A=6 x^{2}$. Differentiating gives

$$
\begin{aligned}
V^{\prime} & =3 x^{2} x^{\prime}=300 x^{\prime} \\
A^{\prime} & =12 x x^{\prime}=120 x^{\prime}
\end{aligned}
$$

Since $V^{\prime}=30$, we have $x^{\prime}=0.1$ and $A^{\prime}=12$. So the surface area is increasing at a rate of 12 square meters per second.

