1. (10 pts.) Find all values of the constant c that make the function $f(x)$ continuous on $(-\infty, \infty)$.

$$
f(x)= \begin{cases}c^{2} x^{2}-3 x-1, & \text { if } x<1 \\ 3 c \cos (x-1), & \text { if } x \geq 1\end{cases}
$$

answer: Continuity at $x=1$ must have $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$. Therefore, $c^{2}(1)-3(1)-1=3 c \Rightarrow c^{2}-3 c-4=0$. Therefore $c=4,-1$.
2. (10 pts.) Find the linear approximation of the function $f(x)=\sin (2 x)$ at $a=\frac{\pi}{6}$. answer: $f\left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} . f^{\prime}\left(\frac{\pi}{6}\right)=1$. Therefore: $L(x)=\frac{\sqrt{3}}{2}+1\left(x-\frac{\pi}{6}\right)$.
3. (10 pts.) Find the derivative of the function $f(x)=\sqrt{3 x-1}$ using the limit definition of the derivative. NO CREDIT will be given if Limit Definition is not used. answer: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{3(x+h)-1}-\sqrt{3 x-1}}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sqrt{3(x+h)-1}-\sqrt{3 x-1}}{h} \cdot \frac{\sqrt{3(x+h)-1}+\sqrt{3 x-1}}{\sqrt{3(x+h)-1}+\sqrt{3 x-1}} \\
& =\lim _{h \rightarrow 0} \frac{(3(x+h)-1)-(3 x-1)}{h(\sqrt{3(x+h)-1}+\sqrt{3 x-1}}=\frac{3}{2 \sqrt{3 x+1}}
\end{aligned}
$$

4. (10 pts.) Find an equation of the tangent line to the curve

$$
4 \sqrt{3 x-y}=x y+9
$$

at the point $(1,-1)$.
answer: $\frac{2\left(3-\frac{d y}{d x}\right)}{\sqrt{3 x-y}}=y+x \frac{d y}{d x}$
$\frac{6-2 \frac{d y}{d x}}{2}=-1+\frac{d y}{d x} \quad 3-\frac{d y}{d x}=-1+\frac{d y}{d x} \quad \frac{d y}{d x}=2$
$y=-1+2(x-1)$
5. ($25 \mathrm{pts} ; 5$ pts. each) Find the limit, if it exists. If the limit does not exist, explain why. All work must be shown.
(a) $\lim _{x \rightarrow 2^{+}} \frac{|2-x|}{x^{2}-7 x+10}=\lim _{x \rightarrow 2^{+}} \frac{|2-x|}{(x-2)(x-5)}=-\frac{1}{3}$
(b) $\lim _{x \rightarrow \infty} \frac{\sin (5 x)}{x}=0$ since $|\sin (5 x)| \leq 1$.
(c) $\lim _{x \rightarrow \infty} \frac{3-x^{3}}{\left(2 x^{2}+1\right)(x-2)}=\lim _{x \rightarrow \infty} \frac{3-x^{3}}{2 x^{3}-4 x^{2}+x-2}=-\frac{1}{2}$
(d) $\lim _{x \rightarrow 0} \frac{e^{x}-e^{2 x}}{\sqrt{5 x+1}-1}=\lim _{x \rightarrow 0} \frac{e^{x}-2 e^{2 x}}{\frac{5}{2 \sqrt{5 x+1}}}=-\frac{2}{5}$
(e) $\lim _{x \rightarrow 0}\left(1+\arcsin (2 x)^{\frac{1}{x}}=P=e^{2}\right.$

$$
\ln P=\lim _{x \rightarrow 0} \frac{\ln (1+\arcsin (2 x))}{x}=\lim _{x \rightarrow 0} \frac{\frac{2 / \sqrt{1-4 x^{2}}}{1+\arcsin (2 x)}}{1}=2
$$

6. ($25 \mathrm{pts} ; 5 \mathrm{pts}$. each) Differentiate the following functions. You do not have to simplify your answers.
(a) $f(x)=x^{2} \cos (3 x+1)$ $f^{\prime}(x)=2 x \cos (3 x+1)-3 x^{2} \sin (3 x+1)$
(b) $f(x)=\frac{\sqrt{x}}{2 \tan (x)}$

$$
f^{\prime}(x)=\frac{\frac{\tan (x)}{\sqrt{x}}-2 \sqrt{x} \sec ^{2}(x)}{4 \tan ^{2}(x)}
$$

(c) $f(x)=\left(\tan ^{-1}(3 x)+2^{x}\right)^{2}$

$$
f^{\prime}(x)=2\left(\arctan (3 x)+2^{x}\right)\left(\frac{3}{1+9 x^{2}}+2^{x} \ln 2\right)
$$

(d) $f(x)=(\sin x)^{\sqrt[3]{x}}$

$$
f^{\prime}(x)=(\sin x)^{\sqrt[3]{x}}\left(\frac{1}{3 x^{2 / 3}} \ln (\sin x)+\sqrt[3]{x} \cot x\right)
$$

(e) $f(x)=\int_{2}^{x^{2}} \sqrt{1+t^{3}} d t$ $f^{\prime}(x)=2 x \sqrt{1+x^{6}}$
7. (10 pts.) Use Newton's method with the initial approximation $x_{1}=0$ to find the second approximation x_{2} to the root of the equation $x-\cos (2 x)=0$.
answer: $x_{2}=0-\frac{-1}{1}=1$
8. (10 pts.) Find the absolute maximum and the absolute minimum of $f(x)=\frac{x}{x^{2}+1}$ on the interval $[0,3]$.
$f^{\prime}(x)=\frac{(1-x)(1+x)}{\left(x^{2}+1\right)^{2}}$
$f(0)=0$ absolute minimum $\quad f(1)=\frac{1}{2}$ absolute maximum $\quad f(3)=\frac{3}{10}$.
9. (10 pts.) A bacteria culture grows with constant relative growth rate. After 2 hours, there are 400 bacteria, and after 3 hours, there are 1600 bacteria. Find the initial population. Simplify your answer as much as possible.
answer: This is an algebra problem: There is no calculus used here. Relative growth rate implies that $P(t)=A b^{t}$. Solve simultaneous equations:
$400=A b^{2}$ and $1600=A b^{3} . b=4$, plug in and $A=P(0)=25$
10. (10 pts.) The base of a triangle is increasing at a rate of $3 \mathrm{~cm} / \mathrm{s}$, and the height is decreasing at a rate of $2 \mathrm{~cm} / \mathrm{s}$. At what rate is the area of the triangle changing when the height is 10 cm and the area is 80 cm ?
$A=\frac{1}{2} B H \quad \frac{d A}{d t}=\frac{1}{2} \frac{d B}{d t} H+\frac{1}{2} B \frac{d H}{d t}$
$\frac{d A}{d t}=\frac{1}{2}(10)(3)+\frac{1}{2}(16)(-2) \mathrm{cm}^{2} / \mathrm{s}=-1 \mathrm{~cm}^{2} / \mathrm{s}$.
11. (10 pts.) A box with an open top and a rectangular base is to be constructed from $24 \mathrm{ft}^{2}$ of cardboard. The length of the base of the box is twice its width. Find the largest possible volume of the box.
answer: Maximize Volume under constraint cardboard $=24$
$V=2 x^{2} h$
$2 x^{2}+6 x h=24$ Therefore: $h=\frac{24-2 x^{2}}{6 x}$
$V=2 x^{2}\left(\frac{24-2 x^{2}}{6 x}\right)$
$V=8 x-\frac{2}{3} x^{3} \quad$ and $V^{\prime}=8-2 x^{2}$
$x^{2}=4$, so $x=2$ and the base of the box is $2 \times 4, h=\frac{5}{3}$.
12. (20 pts; 5 pts. each) Given the function $f(x)=x^{4} e^{-x}$,
(a) Find the critical numbers of $f(x)$.

$$
f^{\prime}(x)=4 x^{3} e^{-x}-x^{4} e^{-x}=x^{3} e^{-x}(4-x): \text { C.V. } x=0,4 .
$$

(b) Find the intervals on which $f(x)$ is increasing and decreasing, and the local maximum and minimum values of $f(x)$.
On $0<x<4, f^{\prime}(x)>0$ so $f(x)$ is increasing.
On $x<0$, and on $x>4, f^{\prime}(x)<0$ so $f(x)$ is decreasing.
(c) Find the inflection points of $f(x)$.
$f^{\prime \prime}(x)=12 x^{2} e^{-x}-4 x^{3} e^{-x}-4 x^{3} e^{-x}+x^{4} e^{-x}=x^{2} e^{-x}(2-x)(6-x)$
Inflection points: $x=2,6$
(d) Find the intervals of concavity.

On $x<2$, and on $x>6, f^{\prime \prime}(x)>0$ so $f(x)$ is concave up.
On $2<x<6, f^{\prime \prime}(x)>0$ so $f(x)$ is concave down.
13. (25 pts; 5 pts. each) Evaluate the following integrals.

(b) $\int_{0}^{1 / 2} \frac{1}{\sqrt{1-x^{2}}} d x$

$$
=\left.\arcsin x\right|_{x=0} ^{x=1 / 2}=\frac{\pi}{6}
$$

(c) $\int \sin ^{3} x \cos ^{4} x d x \quad(d u=\sin x d x)$
$=-\frac{1}{5} \cos ^{5} x-\frac{1}{7} \cos ^{7} x+c$
(d) $\int \frac{1}{x\left(1+(\ln x)^{2}\right)} d x \quad(u=\ln x)$ $=\arctan (\ln x)$
(e) $\int \sqrt{x} \ln x d x \quad$ (by parts: $u=\ln x, d V=\sqrt{x} d x$) $=\frac{2}{3} x^{3 / 2} \ln x-\frac{4}{9} x^{2 / 3}+c$
14. (15 pts.) Sketch the graph of the function that satisfies all of the given conditions. Indicate clearly all asymptotes, the intervals on which $f(x)$ is increasing and decreasing, local maxima and minima, the inflection points, and the intervals of concavity.
$f(x)$ is defined for all $x \neq 0, x \neq 3$;
$\lim _{x \rightarrow-\infty} f(x)=1, \quad \lim _{x \rightarrow+\infty} f(x)=0$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow 0^{+}} f(x)=-\infty \\
& \lim _{x \rightarrow 3^{-}} f(x)=+\infty, \quad \lim _{x \rightarrow 3^{+}} f(x)=-\infty \\
& f^{\prime}(x)>0 \text { if } 0<x<3 \text { or } 3<x<5 ; \\
& f^{\prime}(x)=0 \text { if } x=5 \\
& f^{\prime}(x)<0 \text { if } x<0 \text { or } x>5 ; \\
& f^{\prime \prime}(x)>0 \text { if } 1<x<3 \text { or } x>6 ; \\
& f^{\prime \prime}(x)=0 \text { if } x=1 \text { or } x=6 ; \\
& f^{\prime \prime}(x)<0 \text { if } x<0,0<x<1, \text { or } 3<x<6 .
\end{aligned}
$$

