Math 220 - Practice Final (Fall 2004) Solutions

1. (a) $f^{\prime}(x)=-\frac{1}{x^{2}}-2 \sin (x)+3 \sec ^{2}(x)-4 \csc ^{2}(x)+\frac{5}{x}+6 e^{x}+\frac{1}{\ln (7) x}+\ln (8) 8^{x}+\frac{9}{1+x^{2}}+\frac{1}{\sqrt{1-x^{2}}}$.
(b) We have

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-4}{h} \\
& =\lim _{h \rightarrow 0} 4+h \\
& =4 .
\end{aligned}
$$

(c) This is the area of a rectangle of width 3 and height 1 , plus a triangle of width 3 and height 6 . So the area is $3 \cdot 1+\frac{1}{2} 3 \cdot 6=12$.
4. (a) $f^{\prime}(x)=(2 x+1)\left(x^{3}-3 x^{2}+x+1\right)+\left(x^{2}+x+1\right)\left(3 x^{2}-6 x+1\right)$.
(b) $g^{\prime}(x)=\frac{1 \cdot\left(x^{2}+1\right)-(x+1)(2 x)}{\left(x^{2}+1\right)^{2}}$.
(c) $p^{\prime}(x)=10\left(1+x^{4}\right)^{9} \cdot\left(4 x^{3}\right)$.
(d) $q^{\prime}(x)=\cos \left(\frac{1}{x e^{2 x}}\right) \cdot\left(-\frac{1}{x^{2} e^{4 x}}\right) \cdot\left(e^{2 x}+2 x e^{2 x}\right)=-\frac{1+2 x}{x^{2} e^{2 x}} \cos \left(\frac{1}{x e^{2 x}}\right)$.
5. (a) Either by recognizing this as a derivative or by a calculation, the answer is $2 x$.
(b) Since numerator and denominator both tend to 0, L'Hospital's rule applies. Differentiating numerator and denominator, we get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-e^{x}}{\sin (x)} & =\lim _{x \rightarrow 0} \frac{-e^{x}}{\cos (x)} \\
& =1
\end{aligned}
$$

(c) For $x>1$, we have $\frac{x-1}{|x-1|}=1$, while for $x<1$ we have $\frac{x-1}{|x-1|}=-1$. Therefore the limit does not exist.
(d) Putting the difference over a common denominator, $\frac{1+x}{x \cos (x)}-\frac{1}{x}=\frac{1+x-\cos (x)}{x \cos (x)}$. This is of indeterminate form $0 / 0$, so L'Hospital's rule applies. Differentiating numerator and denominator, we get $\frac{1+\sin (x)}{\cos (x)-x \sin (x)}$, which tends to 1 as $x \rightarrow 0$. Thus

$$
\lim _{x \rightarrow 0}\left(\frac{1+x}{x \cos (x)}-\frac{1}{x}\right)=1
$$

6. (a)

$$
\begin{aligned}
R_{4} & =\sum_{i=1}^{4} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{4} c_{i}^{2}(2 i-2(i-1)) \\
& =2 \sum_{i=1}^{4} c_{i}^{2} \\
& =2(1+9+25+49) \\
& =168 .
\end{aligned}
$$

(b) $\int_{0}^{8} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{8}=170 \frac{2}{3}$.
(c) $\int\left(x^{2}+\frac{2}{x}+3 \cos (x)+\frac{4}{\sqrt{1-x^{2}}}+\frac{5}{1+x^{2}}\right) d x=\frac{x^{3}}{3}+2 \ln (x)+3 \sin (x)+4 \sin ^{-1}(x)+5 \tan ^{-1}(x)+C$.
(d) By the fundamental theorem of calculus, $F^{\prime}(x)=x^{2} e^{x^{2}}$.
7. (a) Let $L(x)$ be the linear approximation near $a=1000$:

$$
\begin{aligned}
L(x)-f(a) & =f^{\prime}(a)(x-a) \\
& =\frac{1}{3} 1000^{-2 / 3}(x-1000) \\
& =\frac{1}{300}(x-1000) \\
\sqrt[3]{1003}-\sqrt[3]{1000} & \approx L(1003)-f(1000) \\
& =\frac{1}{300} 1003-1000 \\
& =0.01
\end{aligned}
$$

8. (a) $f(x)$ is increasing when $f^{\prime}(x)>0$, which occurs when $-1<x<1$. It is decreasing when $f^{\prime}(x)<0$, which occurs when $x<-1$ or $x>1$. The only local minimum is therefore at $x=-1$, where $f(x)=-1$ and the only local maximum is at $x=1$, where $f(x)=1$. Here we use the first derivative test to determine whether each point is a minimum or maximum, and we will see in part (c) that these are also global extreme values.
(b) $f(x)$ is concave up when $f^{\prime \prime}(x)>0$, which occurs when $x>\sqrt{3}$ or $-\sqrt{3}<x<0$. Similarly, $f(x)$ is concave down when $f^{\prime \prime}(x)<0$, which occurs when $x<-\sqrt{3}$ or $0<x<\sqrt{3}$.
(c) As $x \rightarrow \pm \infty$, the exponent $\left(1-x^{2}\right) / 2 \rightarrow-\infty$ and thus $f(x) \rightarrow 0$ (either using L'Hospital's rule or the fact that exponentials dominate polynomials). Therefore $y=0$ is a horizontal asymptote.
(d) Here's the graph for comparison with your sketch.

9. If x is the width/length of the box and h is its height, then the cost is $4 x^{2}+8 x h$ and the volume is $x^{2} h=1000$. Solving for h and substituting, we seek to minimize the function

$$
4 x^{2}+\frac{8000}{x}
$$

Differentiating and setting equal to zero, we get

$$
8 x-\frac{8000}{x^{2}}=0
$$

so $x=10$. Thus the dimensions are $10 \times 10 \times 10$.
10. When the water has height h, the volume is $20000 h$, so

$$
\frac{d V}{d t}=20000 \frac{d h}{d t}
$$

Since $\frac{d V}{d t}=2 \mathrm{~m}^{3} / \mathrm{min}$, the depth of the water is decreasing at a rate of $\frac{1}{10000}$ meter per minute, or 0.1 millimeters per minute.
11. (a) Taking logarithms, we get $\ln (q)=\ln \left(x^{x}\right)=x \ln (x)$. Differentiating, we have $\frac{q^{\prime}}{q}=\ln (x)+1$. Therefore $q^{\prime}(x)=(\ln (x)+1) x^{x}$.
(b) Differentiating, we have

$$
3 y^{2} y^{\prime}+y+x y^{\prime}=0
$$

Solving for y^{\prime} gives

$$
y^{\prime}(x)=-\frac{y}{3 y^{2}+x} .
$$

