1. (a) Find the derivative of the function

$$
f(x)=\frac{1}{x}+2 \cos x+3 \tan x+4 \cot x+5 \ln x+6 e^{x}+\log _{7} x+8^{x}+9 \arctan x+\arcsin x
$$

(b) Let $f(x)=x^{2}$. Find $f^{\prime}(2)$ by using only the definition of the derivative.
(c) Geometrically, the definite integral $\int_{a}^{b} f(x) d x$ represents the area of a certain region on the $x-y$ plane that is related to the curve $y=f(x)$.
Using only this geometrical interpretation fin $\int_{0}^{3}(2 x+1) d x$.
2. Let $\vec{a}=\langle 2,1\rangle$ and $\vec{b}=\langle 1,3\rangle$
(a) Find the angle between \vec{a} and \vec{b}
(b) Let $P(=(1,3), Q=(-1,5)$ and $S=(5,7)$ be points in a plane. Find the fourth vertex of the parallelogram whose sides are $\overrightarrow{P Q}$ and $\overrightarrow{P S}$.
3. The position vector of a particle traveling on the $x-y$ plane at time t is $\vec{r}(t)=$ $\left\langle t, 8 t-t^{2}\right\rangle$, where t is measured in seconds and coordinates are in meters.
(a) Find the particle's average velocity vector during the time interval [0, 2].
(b) Find the particle's velocity vector, speed, and acceleration vector at time $t=1$.
(c) Find a non-parametric equation describing the curve that the particle passes by.
4. Find the derivatives of the following functions.
(a) $f(x)=\left(x^{2}+x+1\right)\left(x^{3}-3 x^{2}+x+1\right)$. [no simplification for answer]
(b) $g(x)=\frac{x+1}{x^{2}+1}$.
(c) $p(x)=\left(1+x^{4}\right)^{10}$
(d) $q(x)=\sin \left(\frac{1}{x e^{2 x}}\right)$
5. (a) Evaluate $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$
(b) Evaluate $\lim _{x \rightarrow 0} \frac{1-e^{x}}{\sin x}$
(c) Evaluate $\lim _{x \rightarrow 1} \frac{x-1}{|x-1|}$
(d) Evaluate $\lim _{x \rightarrow 0}\left(\frac{1+x}{x \cos x}-\frac{1}{x}\right)$
6. (a) Find the Riemann sum $R_{4}=\sum_{i=1} 4 f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)$ for $\int_{0}^{8} x^{2} d x$ with regular partition points $x_{i}=2 i$ for $i=0,1,2,3,4$, and the middle point rule: $c_{i}=$ $\frac{1}{2}\left(x_{i-1}+x_{i}\right)$.
(b) Evaluate the definite integral $\int_{0}^{8} x^{2} d x$
(c) Evaluate the indefinite integral

$$
\int\left(x^{2}+\frac{2}{x}+3 \cos x+\frac{4}{\sqrt{1-x^{2}}}+\frac{5}{1+x^{2}}\right)
$$

(d) Find the derivative of the function $F(x)=\int_{0}^{x} t^{2} e^{t^{2}} d t$.
7. (a) Use a linear approximation or a differential for the function $f(x)=x^{1 / 3}$ at $a=1000$ to find an approximation to $\sqrt[3]{1003}-\sqrt[3]{1000}$.
(b) Let Use the Newton's Method to find a rational number that approximates the positive root to $x^{2}-2=0$.
8. The derivatives of the function $f(x)=x e^{-x^{2} / 2}$ are calculated as follows

$$
f^{\prime}(x)=\left(1-x^{2}\right) e^{-x^{2} / 2}, \quad f^{\prime \prime}(x)=x\left(x^{2}-3\right) e^{-x^{2} / 2}
$$

(a) Find the intervals where f is increasing or decreasing. Also find points of local or global minimum or maximum.
(b) Find intervals where f is concave up or concave down. Also find points of inflection.
(c) Find any horizontal asymptotes.
(d) Sketch the curve of $y=f(x)$ for $-\infty<x<\infty$.
9. A box with a square base, rectangular sides, and open top must have a volume of $1000 \mathrm{~cm}^{3}$. The material for the base costs $\$ 4 / \mathrm{cm}^{2}$ and that for the sides $\$ 2 / \mathrm{cm}^{2}$. Find the dimensions of a box that minimizes the cost of material used.
10. A swimming pool of dimension $100(\mathrm{~m}) \times 200(\mathrm{~m})$ and horizontal bottom is drained at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$. Find the rate of decreasing of the depth of the water in the pool.
11. (a) Let $q(x)=x^{x}$. Using the logarithmic differentiation technique, find $q^{\prime}(x)$.
(b) Let $y=y(x)$ be implicitly defined by $y^{3}+x y=1$. Using the implicit differentiation technique, find $y^{\prime}(x)$.
(c) Find the equation of the line that has slope 3 and is tangent to the curve given parametrically by $x=t^{2}+1, y=t^{3}$.

