Math 0220 Sample Final 3

1a. (10 pts.) Given $f(x)=x^{2}+1$, use the definition of the derivative to show that $f^{\prime}(x)=2 x$.

1b. (5 pts.) Find the equation of the line tangent to the curve of $y=x^{1 / 3}$ at $x=1000$.
(Note: $(1000)^{1 / 3}=10$.)

1c. (5 pts.) Use the tangent line in part (b) to obtain an approximation for $(1005)^{1 / 3}$.

1d. (5 pts.) Approximate $\sqrt{2}$ by applying Newton's Method to approximate the positive zero of the function $f(x)=x^{2}-2$ with $x_{1}=1.5$. Find x_{2}. (You do have to show your work.)

2a. (9 pts.) Let $y=\frac{\ln x}{x^{3}+1}$. Find $\frac{d y}{d x}$.

2b. (9 pts.) Let $y=\left(1+2 x-x^{3}\right)^{100}$. Find $\frac{d y}{d x}$.

2c. (9 pts.) Let $y=\arctan \left(x^{2}+3\right)$. Find $\frac{d y}{d x}$.

2d. (9 pts.) Let $y=x^{\sin x}$. Find $\frac{d y}{d x}$.

2e. (9 pts.) Given $y^{3}+x y+e^{2 x}=2$, find $\frac{d y}{d x}$ at $(0,1)$.
3. Let $f(x)=2 x^{3}-3 x^{2}-12 x+5,-\infty<x \leq 4$. Then $f^{\prime}(x)=6 x^{2}-6 x-12=$ $6(x-2)(x+1)$.
3a. (5 pts.) Find the intervals on which $f(x)$ is increasing or decreasing.

3b. (5 pts.) Find the local maxima and local minima of $f(x)$.

3c. (5 pts.) Find the intervals on which the graph of $f(x)$ is concave upward or concave downward.

3d. (5 pts.) Find the points of inflection.

3e. (5 pts.) Sketch the graph of $f(x)$ on $(-\infty, 4]$.

3f. (5 pts.) Find the global (absolute) maximum and the global (absolute) minimum.
4. (10 pts.) The owner of a nursery center wants to fence in 1600 square feet of land in a rectangular plot to be used for different shrubs. The plot is to be divided as follows:

x

What is the least number of feet of fence needed?

5a. (5 pts.) Find $\lim _{x \rightarrow \infty} \frac{3 x^{5}+x-1}{5 x^{5}+3 x^{2}+2}$.

5b. (5 pts.) $\lim _{x \rightarrow 0} \frac{\sin (8 x)}{56 x}$.

5c. (5 pts.) $\lim _{t \rightarrow 0}(1+3 t)^{\frac{1}{t}}$.
6. Let $\vec{v}=\langle-1,4\rangle$ and $\vec{u}=\langle 2,-3\rangle$ be two vectors in a plane.

6a. (5 pts.) Find $\|3 \vec{v}-2 \vec{u}\|$.

6b. (5 pts.) Find the unit vector in the direction of \vec{u}.

6 c . (5 pts.) Find the vector of \vec{v} projected on the vector \vec{u}.

6 d . (5 pts.) Let $w=\left\langle t^{2}, 9\right\rangle$. Find t such that \vec{w} is perpendicular to \vec{v}.
7. The position vector of a particle traveling on the $x-y$ plane at time t is

$$
\vec{r}(t)=\left\langle t, 4 t-t^{2}\right\rangle, 0 \leq t \leq 4
$$

where t is measured in seconds and the distance is measured in meters.
7a. (5 pts.) Find the average velocity of the particle during the time from $t=0$ to $t=2$.

7b. (5 pts.) Find the velocity and speed of the particle at $t=1$.

7c. (5 pts.) Find the acceleration of the particle at $t=1$.

7 d . (5 pts .) Find the equation (by eliminating t) in x and y which describes the path curve of the particle and sketch the path curve from $t=0$ to $t=4$.

8a. (5 pts.) Find the Riemann sum $R_{4}=\sum_{i=1}^{4} f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)$ for $\int_{0}^{8} x^{2} d x$ with regular partition points. $x_{i}=2 i$ for $i=0,1,2,3,4$ and the midpoint rule $c_{i}=$ $\frac{1}{2}\left(x_{i-1}+x_{i}\right)$ for $i=0,1,2,3,4$.

8b. (6 pts.) State the definition of $\int_{a}^{b} f(x) d x$. (You do have to explain your notations.)

8c. (6 pts.) $\int_{0}^{2}\left(3 x^{2}+\sqrt{x}\right) d x$.

8d. (6 pts.) $\int \sin ^{2} x \cos x d x$

8e. (6 pts.) $\int \frac{x}{4+x^{2}} d x$

8f. (6 pts.) $\int \frac{1}{4+x^{2}} d x$

