Math 0220 Sample Final 2

1. Let $\vec{a}=\langle 2,1\rangle$ and $\vec{b}=\langle 1,3\rangle$.
(3 pts.)
1a. Evaluate $|\vec{a}+\vec{b}|$
(3 pts.)
1b. Find the unit vector in the direction of \vec{b}.
(4 pts.)
1c. Find all values of t such that \vec{a} is perpendicular to $\vec{c}=\langle-4,8 t\rangle$.
(5 pts.)
2a. Give a parametric vector equation for a circle of radius 9 with the center at the point $(1,-2)$.
(5 pts.)
2b. The trajectory of an object is determined by

$$
\vec{r}(t)=\left\langle 2 t,-2 t^{2}+16 t\right\rangle \text { where }-\infty<t<\infty .
$$

Eliminate the parameter t and find an equation in x and y that describes the curve on which the object moves.
3. Let $f(x)=x(x-1)^{2},-\infty<x<\infty$.
(10 pts.)
3a. Find all points where f has a local maximum or local minimum. Justify your answers.
(10 pts.)
3b. Find all inflection points. Justify your answer.
(10 pts.)
3c. Graph the function.
(10 pts.)
4. Find x_{2}, the second iterate in Newton's method, to find an approximate value for the negative solution of $x^{4}=10100$. Assume that $x_{1}=-10$. Show all details.
(10 pts.)
5a. Find the equation for the line tangent to $y=x^{1 / 4}$ at $x=10000$. Hint: $(10000)^{1 / 4}=10$.
(5 pts.)
5b. Use the tangent line found in part (a) to obtain an approximate value for $(10100)^{1 / 4}$.
(10 pts.)
6a. Evaluate: $\lim _{x \rightarrow 0} \frac{x}{\sqrt{x+4}-2}$
(10 pts.)
6b. Evaluate: $\lim _{x \rightarrow 3^{-}} \frac{|x-3|}{x-3}$
(10 pts.)
6c. Evaluate: $\lim _{x \rightarrow 1} \frac{\arctan (\tan (2 x-3))}{2 x-5}$
(10 pts.)
6d. Evaluate: $\lim _{x \rightarrow-\infty} \frac{\ln \left(1+\frac{3}{x^{2}}\right)}{\sin \left(\frac{4}{x^{2}}\right)}$
(10 pts.)
6e. Evaluate: $\lim _{x \rightarrow 0} x^{2} \ln \left(x^{2}\right)$
(10 pts.)
7a. Evaluate: $\int \frac{d x}{4+25 x^{2}}$
(10 pts.)
7b. Evaluate: $\int\left(12^{x}+x^{1 / 2}\right) d x$
(10 pts.)
7c. Let $f(x)=\int_{0}^{2 x} \frac{d t}{\sqrt{1+t^{2}}}$. Find $\frac{d f}{d x}$.
(10 pts.)
8a. Find $\frac{d y}{d x}$ at the point $(x, y)=(0,1)$ on the curve defined by the equation $y^{2}+$ $x e^{y^{2}}=1$.
(10 pts.)
8 b. Let $y=\arctan \left(3 \sin ^{2}(x)\right)$. Find $y^{\prime}\left(\frac{\pi}{4}\right)$.
(10 pts.)
8c. Let $y=x^{(2 x)}$. Find $\frac{d y}{d x}$.
(15 pts.)
9. A particle moves along the curve $2 x^{2}-x y+3 y^{2}=24$. If at a given time, the particle is at position $(-3,1)$ and the x coordinate of its velocity at this point is 5 then find the y coordinate of the velocity.

