Math 0220 Sample Final 1

(10 pts.)
1a. A particle moves with speed 2 around a circle of radius 4 centered at $(x, y)=$ $(1,0)$. Assume that the particle is at $(x, y)=(5,0)$ at time $t=0$. Find the vector equation describing the motion of the particle if it moves clockwise around the circle as t increases.
(15 pts.)
1b. The trajectory of an object is described by the vector function

$$
\bar{r}=\left(4+7 t^{3}\right) \bar{i}+(1-2 t) \bar{j}, \quad-\infty<t<\infty
$$

Eliminate t and find an equation in x and y that describes the curve on which the object moves.
(15 pts.)
2. Use a tangent line to the function $f(x)=(8 x)^{1 / 3}$ to find an approximate value for $(8.08)^{1 / 3}$.
(10 pts.)
3. Using Newton's method, find x_{2}, the second iterate, to approximate the solution of $x^{5}+x^{3}=1$. Assume that $x_{1}=1$.
4. Given the function:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{x^{2}},-\infty<x \leq-1 \\
-\frac{x}{2},-1<x \leq 0 \\
1+x^{2}, x>0
\end{array}\right.
$$

Determine:
(5 pts. each)
4a. $\lim _{x \rightarrow-1^{+}} f(x)$

4b. $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)$

4c. Sketch the graph of the function.
(6 pts. each)
5. Find the first derivative of the following functions:

5a. $f(x)=\tan ^{-1}\left(x^{3}+2 x\right)$

5b. $s(x)=\sin ^{2}(x)-\frac{3}{x^{1 / 3}}, x \neq 0$.

5c. $y=\frac{x}{\ln (x)}$.

5d. $h(x)=3^{\tan (x)}$.

5e. $y=x^{3} \ln \left(x^{2}\right)$
(6 pts. each)
6. Determine the following limits:

6a. $\lim _{h \rightarrow 0^{+}} \frac{|-2+h|-|-2|}{h}$

6b. $\lim _{x \rightarrow 0} \frac{\tan ^{-1}(2+x)-\tan ^{-1}(2)}{x}$.

6c. $\lim _{x \rightarrow 0^{+}} x^{2} \ln \left(x^{3}\right)$

6d. $\lim _{t \rightarrow 0}(1+3 t)^{\frac{1}{t}}$

6e. $\lim _{x \rightarrow 0} x^{2}(1-\cos (2 x))^{-1}$
(15 pts.)
7. Find the equation for the line tangent to the graph of the equation $\sqrt{y+x}-$ $\sqrt{y-x}=2$ at $Q=(10,26)$.
(15 pts.)
8. A spherically shaped balloon is being inflated by pumped air. The area of its surface is $S=4 \pi r^{2}$ square inches, and its volume is $V=\frac{4}{3} \pi r^{3}$ cubic inches, where r is the radial distance from the center of the balloon to its surface. As air is pumped into the balloon, assume that the area of the surface is increasing at a rate of 8 square inches per second. How fast is its radius increasing when the volume reaches $\frac{32 \pi}{3}$ cubic inches.
(15 pts.)
9. A wire 16 feet long has to be formed into a rectangle. What dimensions should the rectangle have to maximize its area?
(10 pts. each)
10a. Find the area under the curve: $y=2^{x}$ between $x=0$ and $x=5$.

10b. Evaluate $\int \frac{(x+1)}{1+2 x^{2}} d x$
11. Consider the function $f=x^{2} e^{-x}$ where $-\infty<x<\infty$.
(7 pts.)
11a. Find all values of x where f attains a relative maximum or a relative minimum. Justify your answer.
(3 pts.)
11b. Sketch the graph of the function.

