Math 220 (6pm section) - Exam 2 Solutions

1. Determine the derivatives of the following functions. (5 points each)
(a) $f(x)=\tan ^{-1}\left(e^{x}\right)$

Solution. Using the chain rule,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+\left(e^{x}\right)^{2}} \cdot e^{x} \\
& =\frac{e^{x}}{1+e^{2 x}}
\end{aligned}
$$

(b) $\ln (x)^{\ln (x)}$

Solution. Since $\ln (x)^{\ln (x)}=e^{\ln (x) \ln (\ln (x))}$, we can use the chain rule to get

$$
\begin{aligned}
f^{\prime}(x) & =e^{\ln (x) \ln (\ln (x))}\left(\frac{1}{x} \cdot \ln (\ln (x))+\ln (x) \frac{1}{\ln (x)} \frac{1}{x}\right) \\
& =\frac{1}{x} \ln (x)^{\ln (x)}(\ln (\ln (x))+1)
\end{aligned}
$$

(c) $e^{e^{e^{x}}}$

Solution. Using the chain rule twice,

$$
f^{\prime}(x)=e^{e^{e^{x}}} \cdot e^{e^{x}} \cdot e^{x}
$$

(d) $x \sinh (\ln (x))$

Solution. Using the product rule and chain rule,

$$
\begin{aligned}
f^{\prime}(x) & =\sinh (\ln (x))+x \cosh (\ln (x)) \cdot \frac{1}{x} \\
& =\sinh (\ln (x))+\cosh (\ln (x))
\end{aligned}
$$

Alternatively, note that $x \sinh (\ln (x))=x \frac{e^{\ln (x)}-e^{-\ln (x)}}{2}=\frac{x^{2}-1}{2}$, so the derivative is just x. These two answers are the same, since

$$
\begin{aligned}
\sinh (\ln (x))+\cosh (\ln (x)) & =\frac{e^{\ln (x)}-e^{-\ln (x)}}{2}+\frac{e^{\ln (x)}+e^{-\ln (x)}}{2} \\
& =\frac{x-1 / x}{2}+\frac{x+1 / x}{2} \\
& =x
\end{aligned}
$$

2. Evaluate so that your answer is a fraction. (5 points each)
(a) $\ln (\cosh (2)-\sinh (2))=$

Solution. We have

$$
\begin{aligned}
\ln (\cosh (2)-\sinh (2)) & =\ln \left(\frac{e^{2}+e^{-2}}{2}-\frac{e^{2}-e^{-2}}{2}\right) \\
& =\ln \left(\frac{2 e^{-2}}{2}\right) \\
& =-2
\end{aligned}
$$

(b) $\cot \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=$

If $\theta=\cos ^{-1}\left(\frac{4}{5}\right)$, then it is the measure of the marked angle above. Since the cotangent is the ratio of adjacent divided by opposite, we get

$$
\cot \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=\frac{4}{3}
$$

3. Determine each limit. Show your work. (6 points each)
(a) $\lim _{x \rightarrow 0^{+}} x \ln (x)$

Solution. Rewrite $x \ln (x)=\frac{\ln (x)}{1 / x}$. Evaluating at $x=0^{+}$gives the indeterminate form $\frac{-\infty}{\infty}$, so L'Hospital's rule applies. Differentiating top and bottom, we consider

$$
\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}-x=0
$$

Therefore the original limit is also 0 .
(b) $\lim _{x \rightarrow 0} \cosh (x)^{1 / x^{2}}$

Solution. Evaluating at $x=0$ yields the indeterminate form 1^{∞}, which leads us to take the natural logarithm of the expression and try to compute

$$
\lim _{x \rightarrow 0} \ln \left(\cosh (x)^{1 / x^{2}}\right)=\lim _{x \rightarrow 0} \frac{\ln (\cosh (x))}{x^{2}}
$$

This is of form $\frac{0}{0}$, so L'Hospital's rule applies. Differentiating top and bottom, we are led to consider

$$
\lim _{x \rightarrow 0} \frac{\sinh (x) / \cosh (x)}{2 x}=\lim _{x \rightarrow 0} \frac{\tanh (x)}{2 x}
$$

Again, this is of form $\frac{0}{0}$, so we apply L'Hospital's rule again and consider

$$
\lim _{x \rightarrow 0} \frac{\operatorname{sech}^{2}(x)}{2}=\frac{1}{2}
$$

Therefore

$$
\lim _{x \rightarrow 0} \ln \left(\cosh (x)^{1 / x^{2}}\right)=\frac{1}{2}
$$

and

$$
\lim _{x \rightarrow 0} \cosh (x)^{1 / x^{2}}=e^{1 / 2}=\sqrt{e}
$$

4. Find the point on the line $y=2 x-5$ closest to the origin. (12 points)

Solution. Suppose (x, y) is a point on the line. We seek to minimize the squared distance to the origin is $D=x^{2}+y^{2}$, and we have $y=2 x-5$ since (x, y) is on the line. Substituting, we find

$$
D=x^{2}+(2 x-5)^{2},
$$

and differentiating,

$$
D^{\prime}=2 x+2 \cdot(2 x-5) \cdot 2=10 x-20 .
$$

Setting $D^{\prime}=0$ we get $x=2$ and thus $y=2 \cdot 2-5=-1$. We know this is a minimum either from geometric reasoning (a minimum value clearly exists and this is the only critical point), the first derivative test ($D^{\prime}<0$ when $x<2$ and $D^{\prime}>0$ when $x>2$) or the second derivative test ($D^{\prime \prime}=10>0$). So the closest point to the origin is $(2,-1)$.
5. Shown below is the graph of the derivative $f^{\prime}(x)$ of a function $f(x)(f(x)$ is NOT shown).

Within the interval shown, answer the following questions about $f(x)$ (NOT $f^{\prime}(x)$). Briefly explain your reasoning, but feel free to round numbers to the nearest integer. (2 points each)
(a) Where is $f(x)$ increasing?

Solution. $f(x)$ is increasing on $(-6,-4)$ and $(0,4)$ since this is where $f^{\prime}(x)>0$.
(b) Where is $f(x)$ decreasing?

Solution. $f(x)$ is increasing on $(-4,0)$ and $(4,6)$ since this is where $f^{\prime}(x)<0$.
(c) What are the local maxima of $f(x)$, and how do you know they are maxima?

Solution. The local maxima are at $x=-4$ and $x=4$ since these are the points where $f^{\prime}(x)=0$ and $f^{\prime}(x)$ is decreasing.
(d) What are the local minima of $f(x)$, and how do you know they are minima?

Solution. The only local minimum is at $x=0$ since this is the point where $f^{\prime}(x)=0$ and $f^{\prime}(x)$ is increasing.
(e) Where is $f(x)$ concave up?

Solution. $f(x)$ is concave up on $(-1,1)$ since this is where $f^{\prime}(x)$ is increasing.
(f) Where is $f(x)$ concave down?

Solution. $f(x)$ is concave down on $(-6,-1)$ and $(1,6)$ since this is where $f^{\prime}(x)$ is decreasing.
(g) Where are the inflection points of $f(x)$?

Solution. The inflection points of $f(x)$ are at -1 and 1 since these are where $f^{\prime}(x)$ changes from increasing to decreasing or vice versa.
6. Let $f(x)=x^{2 / 3}\left(x^{2}-16\right)$. Find the minimum and maximum values of $f(x)$ on the interval $[-3,3]$. Show your work. (12 points)

Solution. Expanding, we have $f(x)=x^{8 / 3}-16 x^{2 / 3}$, so

$$
f^{\prime}(x)=\frac{8}{3} x^{5 / 3}-\frac{32}{3} x^{-1 / 3}=\frac{8}{3} x^{-1 / 3}\left(x^{2}-4\right)
$$

Therefore the critical points are at $x=0$ (where $f^{\prime}(x)$ is undefined) and $x= \pm 2$ (where ${ }^{\prime} f(x)=0$). To find the maxima and minima of $f(x)$ on $[-3,3]$ we must consider these critical points and the endpoints $x= \pm 3$. Note that $f(x)$ is even, so $f(-2)=f(2)$ and $f(-3)=f(3)$. We compute

$$
\begin{aligned}
& f(0)=0^{2 / 3}\left(0^{2}-16\right)=0 \\
& f(2)=2^{2 / 3}\left(2^{2}-16\right)=-12 \sqrt[3]{4} \\
& f(3)=3^{2 / 3}\left(3^{2}-16\right)=-7 \sqrt[3]{9}
\end{aligned}
$$

The maximum value is thus 0 , since the other two possibilities are negative. By the first derivative test, $f(x)$ has a local minimum at $x=2$, so $f(2)<f(3)$. Alternatively, you can compare $f(2)^{3}=-1728 \cdot 4$ to $f(3)^{3}=-343 \cdot 9$ to see that $f(2)$ is smaller.
The final result is that the maximum value of $f(x)$ on $[-3,3]$ is 0 and the minimum is $-12 \sqrt[3]{4}$.
7. A sample of plutonium initially has a mass of $128 g$, but after 30 years there is only $32 g$ remaining. How much will be left after 75 years? Show your work. (8 points)

Solution. We use the model $m(t)=m_{0} e^{k t}$ for radioactive decay. Evaluating at $t=0$ gives $m(0)=$ $m_{0}=128$ and at $t=30$ gives

$$
\begin{aligned}
128 e^{30 k} & =32 \\
e^{30 k} & =\frac{1}{4} \\
30 k & =\ln (1 / 4) \\
k & =\ln (1 / 4) / 30
\end{aligned}
$$

So

$$
\begin{aligned}
m(75) & =128 e^{\ln (1 / 4) \cdot 75 / 30} \\
& =128(1 / 4)^{5 / 2} \\
& =128(1 / 2)^{5} \\
& =4
\end{aligned}
$$

There are $4 g$ of plutonium after 75 years.
8. Suppose that the functions $f(x)$ and $g(x)$ are differentiable, with values given in the following table.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	-1	3	2	-2
1	0	2	0	-3
2	1	$1 / 2$	-1	$-1 / 2$
3	3	1	-2	-1

Suppose that $h(x)=g(f(x))$. What is $\left(h^{-1}\right)^{\prime}(0)$? Show your work. (12 points)

Solution. We have

$$
\left(h^{-1}\right)^{\prime}(x)=\frac{1}{h^{\prime}\left(h^{-1}(x)\right)}
$$

(if you forget this formula, you can derive it by differentiating the identity $h\left(h^{-1}(x)\right)=x$).
To compute $h^{-1}(0)$, we look for an a with $g(f(a))=0$. We break this task up into two steps: find b so that $g(b)=0$ and then find a so that $f(a)=b$. Examining the table, the only input with $g(b)=0$ is $b=1$, and the only input with $f(a)=1$ is $a=2$. So $h^{-1}(0)=2$.

Now we use the chain rule to compute the derivative of h in terms of the derivatives of f and g :

$$
\begin{aligned}
\left(h^{-1}\right)^{\prime}(0) & =\frac{1}{h^{\prime}\left(h^{-1}(0)\right)} \\
& =\frac{1}{h^{\prime}(2)} \\
& =\frac{1}{g^{\prime}(f(2)) \cdot f^{\prime}(2)} \\
& =\frac{1}{g^{\prime}(1) \cdot f^{\prime}(2)} \\
& =\frac{1}{-3 \cdot 1 / 2} \\
& =-\frac{2}{3}
\end{aligned}
$$

