Math 220 (6pm section) - Exam 2

1. Determine the derivatives of the following functions. (5 points each)
(a) $f(x)=\tan ^{-1}\left(e^{x}\right)$
(b) $\ln (x)^{\ln (x)}$
(c) $e^{e^{e^{x}}}$
(d) $x \sinh (\ln (x))$
2. Evaluate so that your answer is a fraction. (5 points each)
(a) $\ln (\cosh (2)-\sinh (2))=$
(b) $\cot \left(\cos ^{-1}\left(\frac{4}{5}\right)\right)=$
3. Determine each limit. Show your work. (6 points each)
(a) $\lim _{x \rightarrow 0^{+}} x \ln (x)$
(b) $\lim _{x \rightarrow 0} \cosh (x)^{1 / x^{2}}$
4. Find the point on the line $y=2 x-5$ closest to the origin. (12 points)
5. Shown below is the graph of the derivative $f^{\prime}(x)$ of a function $f(x)(f(x)$ is NOT shown).

Within the interval shown, answer the following questions about $f(x)$ (NOT $\left.f^{\prime}(x)\right)$. Briefly explain your reasoning, but feel free to round numbers to the nearest integer. (2 points each)
(a) Where is $f(x)$ increasing?
(b) Where is $f(x)$ decreasing?
(c) What are the local maxima of $f(x)$, and how do you know they are maxima?
(d) What are the local minima of $f(x)$, and how do you know they are minima?
(e) Where is $f(x)$ concave up?
(f) Where is $f(x)$ concave down?
(g) Where are the inflection points of $f(x)$?
6. Let $f(x)=x^{2 / 3}\left(x^{2}-16\right)$. Find the minimum and maximum values of $f(x)$ on the interval $[-3,3]$. Show your work. (12 points)
7. A sample of plutonium initially has a mass of $128 g$, but after 30 years there is only $32 g$ remaining. How much will be left after 75 years? Show your work. (8 points)
8. Suppose that the functions $f(x)$ and $g(x)$ are differentiable, with values given in the following table.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	-1	3	2	-2
1	0	2	0	-3
2	1	$1 / 2$	-1	$-1 / 2$
3	3	1	-2	-1

Suppose that $h(x)=g(f(x))$. What is $\left(h^{-1}\right)^{\prime}(0)$? Show your work. (12 points)

