Math 220 - Practice Exam 1 (version B) Solutions

1. Give a value for each of the following limits. (4 points each)
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-\sqrt{3 x^{2}+1}}{x-1}$

Solution. Multiply by the conjugate:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-\sqrt{3 x^{2}+1}}{x-1} & =\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-\sqrt{3 x^{2}+1}}{x-1} \cdot \frac{\sqrt{x^{2}+3}+\sqrt{3 x^{2}+1}}{\sqrt{x^{2}+3}+\sqrt{3 x^{2}+1}} \\
& =\lim _{x \rightarrow 1} \frac{\left(x^{2}+3\right)-\left(3 x^{2}+1\right)}{(x-1)\left(\sqrt{x^{2}+3}+\sqrt{3 x^{2}+1}\right)} \\
& =\lim _{x \rightarrow 1} \frac{-2 x^{2}+2}{(x-1)\left(\sqrt{x^{2}+3}+\sqrt{3 x^{2}+1}\right)} \\
& =\lim _{x \rightarrow 1} \frac{-2(x-1)(x+1)}{(x-1)\left(\sqrt{x^{2}+3}+\sqrt{3 x^{2}+1}\right)} \\
& =\lim _{x \rightarrow 1} \frac{-2(x+1)}{\sqrt{x^{2}+3}+\sqrt{3 x^{2}+1}} \\
& =\frac{-2(1+1)}{\sqrt{1+3}+\sqrt{3+1}} \\
& =\frac{-4}{4} \\
& =-1
\end{aligned}
$$

(b) $\lim _{x \rightarrow 2^{+}} \frac{\left|1-x^{2}\right|}{x-2}$

Solution. Since $\lim _{x \rightarrow 2^{+}}\left|1-x^{2}\right|=3$ and $\lim _{x \rightarrow 2^{+}}(x-2)=0$, the function $\frac{\left|1-x^{2}\right|}{x-2}$ has a vertical asymptote at $x=2$. Near $x=2,1-x^{2}<0$ but $\left|1-x^{2}\right|=x^{2}-1>0$. Therefore

$$
\lim _{x \rightarrow 2^{+}} \frac{\left|1-x^{2}\right|}{x-2}=+\infty
$$

(c) $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}-t}\right)$

Solution. We combine into one fraction:

$$
\begin{aligned}
\frac{1}{t}-\frac{1}{t^{2}-t} & =\frac{t^{2}-t}{t\left(t^{2}-t\right)}-\frac{t}{t\left(t^{2}-t\right)} \\
& =\frac{t^{2}-2 t}{t\left(t^{2}-t\right)} \\
& =\frac{t-2}{t^{2}-t}
\end{aligned}
$$

The numerator is negative near $t=0$; the denominator is negative for $0<t<1$ and positive for $t<0$, so

$$
\begin{aligned}
\lim _{t \rightarrow 0^{+}} \frac{t-2}{t^{2}-t} & =+\infty \\
\lim _{t \rightarrow 0^{-}} \frac{t-2}{t^{2}-t} & =-\infty
\end{aligned}
$$

Since the two one-sided limits are different, $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}-t}\right)$ does not exist.
2. Determine the derivatives of the following functions. (4 points each)
(a) $f(x)=\sqrt[3]{x}+(1+x)^{99}$

Solution. By the power rule and chain rule,

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}+99(1+x)^{98}
$$

(b) $f(x)=\left(x^{3}+1\right)^{6} \sin (x)$

Solution. By the product rule and chain rule,

$$
\begin{aligned}
f^{\prime}(x) & =6\left(x^{3}+1\right)^{5}\left(3 x^{2}\right) \sin (x)+\left(x^{3}+1\right)^{6} \cos (x) \\
& =\left(x^{3}+1\right)^{5}\left(18 x^{2} \sin (x)+\left(x^{3}+1\right) \cos (x)\right)
\end{aligned}
$$

(c) $f(x)=\frac{x^{3}+x}{3 x^{2}-1}$

Solution. By the quotient rule,

$$
f^{\prime}(x)=\frac{\left(3 x^{2}+1\right)\left(3 x^{2}-1\right)-\left(x^{3}+x\right)(6 x)}{\left(3 x^{2}-1\right)^{2}}
$$

(d) $f(x)=\tan \left(\cos \left(x^{2}\right)\right)$

Solution. By the chain rule,

$$
f^{\prime}(x)=\sec ^{2}\left(\cos \left(x^{2}\right)\right) \cdot\left(-\sin \left(x^{2}\right)\right) \cdot(2 x)
$$

(e) $f(x)=\frac{1}{x+\sin ^{2}\left(x+x^{2}\right)}$

Solution. By the chain rule, using the fact that $f(x)=\left(x+\sin ^{2}\left(x+x^{2}\right)\right)^{-1}$, we have

$$
f^{\prime}(x)=\frac{-\left(1+2 \sin \left(x+x^{2}\right) \cos \left(x+x^{2}\right)(1+2 x)\right)}{\left(x+\sin ^{2}\left(x+x^{2}\right)\right)^{2}}
$$

3. Suppose that $\lim _{x \rightarrow 1} \frac{f(x)-4}{x-1}=9$. Find $\lim _{x \rightarrow 1} f(x)$. Justify your answer. (8 points)

Solution. Since the limit of the denominator is zero, in order for the whole limit to have a finite value, the limit of the numerator must be zero as well. This implies that $\lim _{x \rightarrow 1} f(x)=4$.
Alternatively, we can solve for $\lim _{x \rightarrow 1} f(x)$:

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{f(x)-4}{x-1} & =9 \\
\lim _{x \rightarrow 1} f(x)-4 & =9 \lim _{x \rightarrow 1}(x-1) \\
\lim _{x \rightarrow 1} f(x) & =4+9 \lim _{x \rightarrow 1}(x-1) \\
& =4+9 \cdot 0 \\
& =4
\end{aligned}
$$

4. Determine the equation of the tangent line to the curve

$$
x \sin (y)-x^{2} \cos (y)=1
$$

at the point $(1, \pi / 2)$. (10 points)
Solution. Implicitly differentiate with respect to x :

$$
\sin (y)+x \cos (y) y^{\prime}-2 x \cos (y)-x^{2}(-\sin (y)) y^{\prime}=0 .
$$

Substitute $x=1$ and $y=\pi / 2$:

$$
\begin{aligned}
1+1 \cdot 0 \cdot y^{\prime}-2 \cdot 1 \cdot 0-1^{2} \cdot(-1) \cdot y^{\prime} & =0 \\
1+y^{\prime} & =0 \\
y^{\prime} & =-1 .
\end{aligned}
$$

Using point-slope form, the equation of the tangent line is

$$
y-\pi / 2=-(x-1)
$$

5. A diamond shaped car jack is tightened, pulling the left and right corners together at a rate of $1 \mathrm{~mm} / \mathrm{s}$.

Suppose that all sides of the jack are 300 mm long. Find the rate at which the car is raised when $\theta=2 \pi / 3$. Feel free to leave square roots in your answer. (10 points)
Solution. We consider the right triangle

It has hypotenuse $L=300$, and therefore base $b=300 \sin (\pi / 3)=150 \sqrt{3}$ and height $h=300 \cos (\pi / 3)=$ 150. We have

$$
b^{2}+h^{2}=L^{2},
$$

which we may differentiate to get

$$
2 b b^{\prime}+2 h h^{\prime}=2 L L^{\prime}=0
$$

Since the corners are pulled together at $1 \mathrm{~mm} / \mathrm{s}$, and this triangle is half the width of the jack overall, $b^{\prime}=-1 / 2$. Thus

$$
\begin{aligned}
h^{\prime} & =\frac{-b b^{\prime}}{h} \\
& =\frac{(-150 \sqrt{3})(-1 / 2)}{150} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
$$

Since there are two such triangles vertically in the jack, the car is raised at a rate of $2 h^{\prime}=\sqrt{3} \mathrm{~mm} / \mathrm{s}$. I did not penalize mistakes regarding the factors of 2 that arose when splitting the diamond up into triangles.
6. Determine where the function $f(x)=\frac{x^{2}-x}{2 x^{2}-1}$ has a horizontal tangent line. (8 points)

Solution. We set $f^{\prime}(x)=0$ and solve for x :

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2 x-1)\left(2 x^{2}-1\right)-\left(x^{2}-x\right)(4 x)}{\left(2 x^{2}-1\right)^{2}} \\
& =\frac{4 x^{3}-2 x^{2}-2 x+1-4 x^{3}+4 x^{2}}{\left(2 x^{2}-1\right)^{2}} \\
& =\frac{2 x^{2}-2 x+1}{\left(2 x^{2}-1\right)^{2}} \\
& =0
\end{aligned}
$$

This rational function will vanish exactly when the numerator does, so we must solve $2 x^{2}-2 x+1=0$. The discriminant of $2 x^{2}-2 x+1$ is $(-2)^{2}-4 \cdot 2 \cdot 1=-4<0$, and thus this quadratic has no real roots (this manifests in the quadratic formula as square roots of -4). Therefore $f(x)$ has no horizontal tangent lines.
7. Suppose that $f(x)$ is a differentiable function with $f(1)=8$ and $f^{\prime}(1)=-3$. Let $h(x)=\sqrt{1+f\left(x^{2}\right)}$. Find $h^{\prime}(1)$. (10 points)

Solution. We use the chain rule, then evaluate at $x=1$.

$$
\begin{aligned}
h^{\prime}(x) & =\frac{f^{\prime}\left(x^{2}\right) \cdot(2 x)}{2 \sqrt{1+f\left(x^{2}\right)}} \\
& =\frac{x f^{\prime}\left(x^{2}\right)}{\sqrt{1+f\left(x^{2}\right)}} \\
h^{\prime}(1) & =\frac{1 \cdot f^{\prime}\left(1^{2}\right)}{\sqrt{1+f\left(1^{2}\right)}} \\
& =\frac{f^{\prime}(1)}{\sqrt{1+f(1)}} \\
& =\frac{-3}{\sqrt{1+8}} \\
& =-1
\end{aligned}
$$

8. Let $f(x)=\sqrt[3]{x}$.
(a) Find a linear approximation to $f(x)$ near $x=a$. (5 points)

Solution. Since $f(x)=x^{1 / 3}$, we have $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$. Then

$$
\begin{aligned}
f(x) & \approx f(a)+f^{\prime}(a)(x-a) \\
& =\sqrt[3]{a}+\frac{1}{3 \sqrt[3]{a^{2}}}(x-a)
\end{aligned}
$$

(b) Approximate $\sqrt[3]{8.012}$. (5 points)

Solution. We set $a=8$, which has cube root 2 , and $x=8.012$. Then

$$
\begin{aligned}
\sqrt[3]{8.012} & \approx \sqrt[3]{8}+\frac{1}{3 \sqrt[3]{8^{2}}}(8.012-8) \\
& =2+\frac{1}{3 \cdot 4}(0.012) \\
& =2.001
\end{aligned}
$$

9. Match each graph with its derivative. (3 points per correct match)
$f(x)$

$$
f^{\prime}(x)
$$

(a)

(1)

(b)

(2)

(c)

(3)

(d)

(4)

Solution.

(a) 3
(b) 1
(c) 4
(d) 2

