Math 220 - Practice Exam 1 (version B)

1. Give a value for each of the following limits. (4 points each)
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-\sqrt{3 x^{2}+1}}{x-1}$
(b) $\lim _{x \rightarrow 2^{+}} \frac{\left|1-x^{2}\right|}{x-2}$
(c) $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}-t}\right)$
2. Determine the derivatives of the following functions. (4 points each)
(a) $f(x)=\sqrt[3]{x}+(1+x)^{99}$
(b) $f(x)=\left(x^{3}+1\right)^{6} \sin (x)$
(c) $f(x)=\frac{x^{3}+x}{3 x^{2}-1}$
(d) $f(x)=\tan \left(\cos \left(x^{2}\right)\right)$
(e) $f(x)=\frac{1}{x+\sin ^{2}\left(x+x^{2}\right)}$
3. Suppose that $\lim _{x \rightarrow 1} \frac{f(x)-4}{x-1}=9$. Find $\lim _{x \rightarrow 1} f(x)$. Justify your answer. (8 points)
4. Determine the equation of the tangent line to the curve

$$
x \sin (y)-x^{2} \cos (y)=1
$$

at the point $(1, \pi / 2)$. (10 points)
5. A diamond shaped car jack is tightened, pulling the left and right corners together at a rate of $1 \mathrm{~mm} / \mathrm{s}$.

Suppose that all sides of the jack are 300 mm long. Find the rate at which the car is raised when $\theta=2 \pi / 3$. Feel free to leave square roots in your answer. (10 points)
6. Determine where the function $f(x)=\frac{x^{2}-x}{2 x^{2}-1}$ has a horizontal tangent line. (8 points)
7. Suppose that $f(x)$ is a differentiable function with $f(1)=8$ and $f^{\prime}(1)=-3$. Let $h(x)=\sqrt{1+f\left(x^{2}\right)}$. Find $h^{\prime}(1)$. (10 points)
8. Let $f(x)=\sqrt[3]{x}$.
(a) Find a linear approximation to $f(x)$ near $x=a$. (5 points)
(b) Approximate $\sqrt[3]{8.012}$. (5 points)
9. Match each graph with its derivative. (3 points per correct match)
$f(x)$
(1)

(b)

(2)

(c)

(3)

(d)

(4)

(a)
(b)
(c)
(d)

