Math 220 - Practice Exam 1 (version A) Solutions

1. Give the limit if it exists
(a) $\lim _{x \rightarrow 2-} \frac{\left|x^{2}-2 x\right|}{x-2}$

Solution. For $0<x<2, x^{2}-2 x<0$, so $\frac{\left|x^{2}-2 x\right|}{x-2}=\frac{2 x-x^{2}}{x-2}=\frac{x(2-x)}{x-2}=-x$. Therefore

$$
\lim _{x \rightarrow 2-} \frac{\left|x^{2}-2 x\right|}{x-2}=\lim _{x \rightarrow 2-}(-x)=-2
$$

(b) $\lim _{x \rightarrow 2+} \frac{\left|x^{2}-2 x\right|}{x-2}$

Solution. For $x>2, x^{2}-2 x>0$, so $\frac{\left|x^{2}-2 x\right|}{x-2}=\frac{x^{2}-2 x}{x-2}=\frac{x(x-2)}{x-2}=x$. Therefore

$$
\lim _{x \rightarrow 2-} \frac{\left|x^{2}-2 x\right|}{x-2}=\lim _{x \rightarrow 2-} x=2
$$

(c) $\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2}$

Solution. Multiply numerator and denominator by the conjugate, then cancel terms.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{x+2}-2}{x-2} & =\lim _{x \rightarrow 2} \frac{(\sqrt{x+2}-2)(\sqrt{x+2}+2)}{(x-2)(\sqrt{x+2}+2} \\
& =\lim _{x \rightarrow 2} \frac{x+2-4}{(x-2)(\sqrt{x+2}+2} \\
& =\lim _{x \rightarrow 2} \frac{1}{\sqrt{x+2}+2} \\
& =\frac{1}{\sqrt{2+2}+2} \\
& =\frac{1}{4}
\end{aligned}
$$

2. Determine the derivatives of the following functions:
(a) $f(x)=x^{4}-2 \sqrt{x}+1-\frac{2}{x^{3}}+\pi x^{\pi}$,

Solution.

$$
f^{\prime}(x)=4 x^{3}-\frac{1}{\sqrt{x}}+\frac{6}{x^{4}}+\pi^{2} x^{\pi-1}
$$

(b) $f(x)=\left(x^{2}-4 x+5\right)^{6}\left(2 x^{3}-1\right)^{3}$,

Solution.

$$
f^{\prime}(x)=6\left(x^{2}-4 x+5\right)^{5}(2 x-4)\left(2 x^{3}-1\right)^{3}+3\left(x^{2}-4 x+5\right)^{6}\left(2 x^{3}-1\right)^{2}\left(6 x^{2}\right)
$$

(c) $g(x)=\frac{3}{(x-\sin (x))^{2}}$,

Solution.

$$
g^{\prime}(x)=\frac{-6}{(x-\sin (x))^{3}} \cdot(1-\cos (x))
$$

(d) $f(x)=\frac{\sin (x) \tan (3 x)}{1+\cos ^{2}(x)}$,

Solution.

$$
f^{\prime}(x)=\frac{\left(\cos (x) \tan (3 x)+3 \sin (x) \sec ^{2}(3 x)\right)\left(1+\cos ^{2}(x)\right)+2 \sin ^{2}(x) \tan (3 x) \cos (x)}{\left(1+\cos ^{2}(x)\right)^{2}}
$$

(e) $h(x)=\sin ^{3}\left(x^{3}\right)$.

Solution.

$$
h^{\prime}(x)=9 x^{2} \sin ^{2}\left(x^{3}\right) \cos \left(x^{3}\right)
$$

3. Evaluate the limit

$$
\lim _{h \rightarrow 0} \frac{\tan (\pi / 4+h)-1}{h}
$$

Solution. We recognize this limit as the derivative of the function $f(x)=\tan (x)$ at $x=\pi / 4$. We know that $f^{\prime}(x)=\sec ^{2}(x)$, so

$$
\lim _{h \rightarrow 0} \frac{\tan (\pi / 4+h)-1}{h}=\sec ^{2}(\pi / 4)=\frac{1}{\cos ^{2}(\pi / 4)}=\frac{1}{(\sqrt{2} / 2)^{2}}=2
$$

4. If $f(x)=x^{3}-2 x+1$,
(a) What is the differential of $f(x)$ at $x=2$?

Solution.

$$
d f=f^{\prime}(x) d x=\left(3 x^{2}-2\right) d x
$$

(b) $f(2)=5$. Use the differential to approximate $f(1.9)$.

Solution. Note that $d x=1.9-2=-0.1$ and $d f=\left(3 \cdot 2^{2}-2\right) \cdot d x=10 \cdot(-0.1)=-1$. Therefore

$$
f(1.9) \approx f(2)+d f=5-1=4
$$

5. Use implicit differentiation to determine the equation of the tangent line to the curve

$$
x^{3} y^{2}-x^{2} y^{3}+2 x^{2}-y^{2}=1
$$

at the point $(1,1)$.
Solution. Differentiating both sides,

$$
3 x^{2} y^{2}+2 x^{3} y y^{\prime}-2 x y^{3}-3 x^{2} y^{2} y^{\prime}+4 x-2 y y^{\prime}=0
$$

and solving yields

$$
y^{\prime}=\frac{-3 x^{2} y^{2}+2 x y^{3}-4 x}{2 x^{3} y-3 x^{2} y^{2}-2 y}
$$

Evaluating at $(1,1)$ gives the derivative:

$$
y^{\prime}=\frac{-3+2-4}{2-3-2}=\frac{5}{3}
$$

Thus the equation of the tangent line is

$$
y-1=\frac{5}{3}(x-1)
$$

6. A 10 m ladder leans against a wall. As the base of the ladder is pulled away at a rate of $0.6 \mathrm{~m} / \mathrm{s}$, the ladder slides down the wall. At what rate is the height of the top of the ladder changing when the base of the ladder is 6 m from the wall? (Give an exact numerical answer)

Solution. If x is the distance that the base has been pulled from the wall, the height of the top of the ladder is $H=\sqrt{100-x^{2}}$. Therefore

$$
\frac{d H}{d t}=\frac{-x}{\sqrt{100-x^{2}}} \frac{d x}{d t} .
$$

Evaluating when $x=6$ and $\frac{d x}{d t}=0.6$ gives

$$
\frac{d H}{d t}=\frac{-6}{\sqrt{100-36}} \cdot(0.6)=\frac{-6}{8} \cdot \frac{6}{10}=\frac{-9}{20} .
$$

So the height of the top of the ladder is changing at a rate of $-\frac{9}{20}=-0.45 \mathrm{~m} / \mathrm{s}$.
7. Determine where the function $f(x)=x \sqrt{8-x^{2}}$ has a horizontal tangent line.

Solution. Differentiate

$$
f^{\prime}(x)=\sqrt{8-x^{2}}-x \frac{x}{\sqrt{8-x^{2}}}
$$

set equal to zero and solve for x :

$$
\begin{aligned}
0 & =\sqrt{8-x^{2}}-\frac{x^{2}}{\sqrt{8-x^{2}}} \\
0 & =\left(8-x^{2}\right)-x^{2} \\
2 x^{2} & =8 \\
x & = \pm 2
\end{aligned}
$$

So $f(x)$ has horizontal tangent lines at $x=2$ and $x=-2$.
8. Sketch the graph of the derivative of the given function $f(x)$:

I would be looking to see that you have the approximate shape correct and that you have the sign of y as a function of x correct (including the locations of the zeros of $f^{\prime}(x)$). I would not look to check that you had the correct vertical scale (in fact, you might notice that the y scale on this solution graph is different from the blank graph provided).
9. The chart below gives the values of $f(x)$ and $g(x)$ and their derivatives at $x=2, x=3$ and $x=4$.

	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
2	4	-2	3	9
3	0	29	-1	4
4	3	2	7	11

Use it to find the following derivatives,
(a) If $h(x)=f(g(x))$, determine $h^{\prime}(4)$.

Solution. By the chain rule,

$$
\begin{aligned}
h^{\prime}(4) & =f^{\prime}(g(4)) \cdot g^{\prime}(4) \\
& =f^{\prime}(2) \cdot g^{\prime}(4) \\
& =3 \cdot 11 \\
& =33
\end{aligned}
$$

(b) If $k(x)=g(f(x))$, determine $k^{\prime}(4)$.

Solution. By the chain rule,

$$
\begin{aligned}
k^{\prime}(4) & =g^{\prime}(f(4)) \cdot f^{\prime}(4) \\
& =g^{\prime}(3) \cdot f^{\prime}(4) \\
& =4 \cdot 7 \\
& =28
\end{aligned}
$$

