Math 220 (7:30pm section) - Exam 1 Solutions

1. Give a value for each of the following limits (including ∞ or $-\infty$ if applicable). (4 points each)
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{\sqrt{x+2}-\sqrt{2 x}}$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{\sqrt{x+2}-\sqrt{2 x}} & =\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{\sqrt{x+2}-\sqrt{2 x}} \cdot \frac{\sqrt{x+2}+\sqrt{2 x}}{\sqrt{x+2}+\sqrt{2 x}} \\
& =\lim _{x \rightarrow 2} \frac{(x-2) x(\sqrt{x+2}+\sqrt{2 x})}{x+2-2 x} \\
& =\lim _{x \rightarrow 2}-x(\sqrt{x+2}+\sqrt{2 x}) \\
& =-2 \cdot(2+2)=-8
\end{aligned}
$$

(b) $\lim _{\theta \rightarrow \pi^{-}} \cot (\theta)$

Solution. Since $\cot (\theta)=\frac{\cos (\theta)}{\sin (\theta)}$ and since $\lim _{\theta \rightarrow \pi^{-}} \cos (\theta)=-1$ while $\lim _{\theta \rightarrow \pi^{-}} \sin (\theta)=0$ from above, $\lim _{\theta \rightarrow \pi^{-}} \cot (\theta)=-\infty$.
(c) $\lim _{t \rightarrow 0}\left(\frac{1}{t^{2}-t}+\frac{1}{t^{2}+t}\right)$

Solution. Rewriting over a common denominator,

$$
\frac{1}{t^{2}-t}+\frac{1}{t^{2}+t}=\frac{1}{t} \frac{(t+1)-(t-1)}{(t+1)(t-1)}=\frac{2}{(t+1)(t-1)}
$$

we see that the limit is $\frac{2}{(1)(-1)}=-2$.
2. Consider the functions $f(x)$ and $g(x)$ shown below:

(a) Find $\lim _{x \rightarrow 2} g(f(x))$. (4 points)

Solution. We compute the two one-sided limits. As x approaches 2 from above, $f(x)$ approaches 0 from above, so $g(f(x))$ approaches 2. Similarly, as x approaches 2 from below, $f(x)$ still approaches 0 from above, so $g(f(x))$ approaches 2 . Thus the limit is 2 .
(b) Where is $f(x)$ continuous? (1 point)

Solution. By visual inspection, $f(x)$ is continuous except at $x=0$.
(c) Where is $g(x)$ continuous? (1 point)

Solution. Similarly, $g(x)$ is continuous except at $x=0$.
(d) Where is $g(f(x))$ continuous? Justify your answer. (6 points)

Solution. Since the composition of continuous functions is continuous, $g(f(x))$ will be continuous except possibly when $x=0$ (when $f(x)$ is not continuous) or when $f(x)=0$ (since $g(x)$ is not continuous at 0). This latter case occurs when $x=2, x=0$ and $x=-1$. We've already found that $\lim _{x \rightarrow 2} g(f(x))=2=g(f(2))$, so $g(f(x))$ is continuous at 2 . We similarly compute the following one sided limits:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} g(f(x)) & =\lim _{f \rightarrow 0^{+}} g(f)=2 \\
\lim _{x \rightarrow 0^{-}} g(f(x)) & =\lim _{f \rightarrow 1^{-}} g(f)=2 \\
\lim _{x \rightarrow-1^{+}} g(f(x)) & =\lim _{f \rightarrow 0^{+}} g(f)=2 \\
\lim _{x \rightarrow-1^{-}} g(f(x)) & =\lim _{f \rightarrow 0^{-}} g(f)=-1 .
\end{aligned}
$$

Since $g(f(0))=2$, we have that $g(f(x))$ is continuous at $x=0$ as well, but not at $x=-1$ (since the two one-sided limits are distinct). So, in summary, $g(f(x))$ is continuous everywhere except at $x=-1$.
3. Determine the derivatives of the following functions. (4 points each)
(a) $f(x)=\left(\sin \left((1+x)^{7}\right)\right)^{3}$

Solution. Using the chain rule repeatedly,

$$
f^{\prime}(x)=3 \sin ^{2}\left((1+x)^{7}\right) \cdot \cos \left((1+x)^{7}\right) \cdot 7(1+x)^{6} .
$$

(b) $f(x)=x \sin (x) \sqrt[3]{1+x}$

Solution. Using the product rule repeatedly,

$$
f^{\prime}(x)=\sin (x) \sqrt[3]{1+x}+x \cos (x) \sqrt[3]{1+x}+\frac{x \sin (x)}{3 \sqrt[3]{(1+x)^{2}}}
$$

(c) $f(x)=\frac{x+\tan (x)}{1-\cos ^{2}(x)}$

Solution. Using the quotient rule and chain rule,

$$
f^{\prime}(x)=\frac{\left(1+\sec ^{2}(x)\right)\left(1-\cos ^{2}(x)\right)-(x+\tan (x))(2 \cos (x) \sin (x))}{\left(1-\cos ^{2}(x)\right)^{2}}
$$

(d) $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$

Solution. Using the product and chain rule,

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)+x^{2} \cos \left(\frac{1}{x}\right) \cdot \frac{-1}{x^{2}}
$$

(e) $f(x)=\left(x^{3}+2\right)^{5}\left(x^{2}-2\right)^{-7 / 2}$

Solution. Using the product and chain rule,

$$
f^{\prime}(x)=5\left(x^{3}+2\right)^{4} \cdot\left(3 x^{2}\right) \cdot\left(x^{2}-2\right)^{-7 / 2}-\frac{7}{2}\left(x^{3}+2\right)^{5} \cdot\left(x^{2}-2\right)^{-9 / 2} \cdot(2 x)
$$

4. Find an equation for the tangent line to the curve

$$
y \cos (x)=2+\sin (x y)
$$

at the point $(0,2)$. (10 points)
Solution. Using implicit differentiation, we have

$$
\begin{aligned}
y^{\prime} \cos (x)-y \sin (x) & =\cos (x y)\left(y+x y^{\prime}\right) \\
y^{\prime}(\cos (x)-x \cos (x y)) & =y(\sin (x)+\cos (x y)) \\
y^{\prime} & =\frac{y(\sin (x)+\cos (x y))}{\cos (x)-x \cos (x y))}
\end{aligned}
$$

Evaluating at $x=0$ and $y=2$ yields $y^{\prime}=\frac{2(0+1)}{1-0}=2$. Substituting this slope into the point-slope form of a line yields

$$
y=2 x+2
$$

5. A balloon is being filled with air at a rate of $100 \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}$. Assuming that the balloon is spherical, how fast is its surface area increasing when its radius is 5 cm ? (10 points)
Solution. The volume is given by $V=\frac{4}{3} \pi r^{3}$ and the surface area by $S=4 \pi r^{2}$. Differentiating both equations with respect to time yields

$$
\begin{aligned}
V^{\prime} & =4 \pi r^{2} r^{\prime} \\
S^{\prime} & =8 \pi r r^{\prime}
\end{aligned}
$$

Substituting $r=5$ and $V^{\prime}=100$ yields $r^{\prime}=\frac{1}{\pi}$ from the first equation and then $S^{\prime}=40$ from the second. So the surface area is increasing at a rate of $40 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$.
6. Determine the tangent lines to the function $f(x)=\frac{x^{2}+3 x+4}{x-1}$ with slope -1 . (10 points)

Solution. We seek values of x with $f^{\prime}(x)=-1$. Differentiating yields the equation

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2 x+3)(x-1)-\left(x^{2}+3 x+4\right)}{(x-1)^{2}}=-1 \\
x^{2}-2 x-7 & =-\left(x^{2}-2 x+1\right) \\
2 x^{2}-4 x-6 & =0 \\
(x-3)(x+1) & =0 .
\end{aligned}
$$

Evaluating, we have $f(3)=11$ and $f(-1)=-1$. Thus the two tangent lines with slope -1 are

$$
\begin{aligned}
& y=-(x-3)+11 \\
& y=-(x+1)-1
\end{aligned}
$$

7. Suppose that $f(x)$ is a differentiable function, and $h(x)=\sqrt{1-f(x)}$. If $h(1)=2$ and $h^{\prime}(1)=-4$, find $f^{\prime}(1)$. (10 points)

Solution. Differentiating, we have

$$
h^{\prime}(x)=\frac{-f^{\prime}(x)}{2 \sqrt{1-f(x)}}=\frac{-f^{\prime}(x)}{2 h(x)}
$$

by the chain rule. Evaluating at $x=1$, substituting $h(1)=2$ and $h^{\prime}(1)=-4$ and solving, we get

$$
\begin{aligned}
-4 & =\frac{-f^{\prime}(1)}{2 \cdot 2} \\
f^{\prime}(1) & =-16
\end{aligned}
$$

8. Let $f(x)=x^{9}$.
(a) Find a linear approximation to $f(x)$ near $x=a$. (4 points)

Solution. The linear approximation equation is

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

Using the definition of $f(x)$, this yields

$$
f(x) \approx a^{9}+9 a^{8}(x-a)
$$

(b) Approximate $(1.01)^{9}$. (4 points)

Solution. We take $x=1.01$ and $a=1$ above. This gives

$$
(1.01)^{9}=f(1.01) \approx 1^{9}+9 \cdot 1^{8} \cdot(0.01)=1.09
$$

9. Match each graph with its derivative. (2 points per correct match)

(a) (4)
(b) (1)
(c) (3)
(d) (2)
