Math 220 (7:30pm section) - Exam 1

Name:	
ID:	
Score:	

1. Give a value for each of the following limits (including ∞ or $-\infty$ if applicable). (4 points each)
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{\sqrt{x+2}-\sqrt{2 x}}$
(b) $\lim _{\theta \rightarrow \pi^{-}} \cot (\theta)$
(c) $\lim _{t \rightarrow 0}\left(\frac{1}{t^{2}-t}+\frac{1}{t^{2}+t}\right)$
2. Consider the functions $f(x)$ and $g(x)$ shown below:
$f(x)$

$g(x)$

(a) Find $\lim _{x \rightarrow 2} g(f(x))$. (4 points)
(b) Where is $f(x)$ continuous? (1 point)
(c) Where is $g(x)$ continuous? (1 point)
(d) Where is $g(f(x))$ continuous? Justify your answer. (6 points)
3. Determine the derivatives of the following functions. (4 points each)
(a) $f(x)=\left(\sin \left((1+x)^{7}\right)\right)^{3}$
(b) $f(x)=x \sin (x) \sqrt[3]{1+x}$
(c) $f(x)=\frac{x+\tan (x)}{1-\cos ^{2}(x)}$
(d) $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$
(e) $f(x)=\left(x^{3}+2\right)^{5}\left(x^{2}-2\right)^{-7 / 2}$
4. Find an equation for the tangent line to the curve

$$
y \cos (x)=2+\sin (x y)
$$

at the point $(0,2)$. (10 points)
5. A balloon is being filled with air at a rate of $100 \frac{\mathrm{~cm}^{3}}{\mathrm{~s}}$. Assuming that the balloon is spherical, how fast is its surface area increasing when its radius is 5 cm ? (10 points)
6. Determine the tangent lines to the function $f(x)=\frac{x^{2}+3 x+4}{x-1}$ with slope -1 . (10 points)
7. Suppose that $f(x)$ is a differentiable function, and $h(x)=\sqrt{1-f(x)}$. If $h(1)=2$ and $h^{\prime}(1)=-4$, find $f^{\prime}(1)$. (10 points)
8. Let $f(x)=x^{9}$.
(a) Find a linear approximation to $f(x)$ near $x=a$. (4 points)
(b) Approximate $(1.01)^{9} \cdot(4$ points $)$
9. Match each graph with its derivative. (2 points per correct match)
(a)

(1)

(b)

(2)

(c)

(3)

(d)

(4)

(a)
(b)
(c)
(d)

