Math 220 - Fall 2010 Exam 2 Solutions

1. (a) $f^{\prime}(x)=2 x e^{-3 x}-3 x^{2} e^{-3 x}+3 \ln (5) 5^{3 x}-\frac{6(1-6 \sin (2 x))}{x+3 \cos (2 x)}$
(b) $y^{\prime}=\frac{1}{1+49 x^{2}}-\frac{6}{\sqrt{1-4 x^{2}}}$
(c) $g^{\prime}(x)=6 \sinh ^{2}(2 x) \cosh (2 x)+9 \sinh (3 x)$
(d) $h^{\prime}(x)=\frac{-54 e^{-2 x}}{\left(1+9 e^{-2 x}\right)^{2}}$
2. (a) Evaluating top and bottom at 1 gives $0 / 0$ so L'Hospital's Rule applies. Differentiating top and bottom gives

$$
\frac{-1+1 / x}{-\pi \sin (\pi x)}
$$

Again, evaluating gives 0/0, so we differentiate again, giving

$$
\frac{1 / x^{2}}{\pi^{2} \cos (\pi x)}
$$

Now evaluating gives the answer, $-\frac{1}{\pi^{2}}$.
(b) Taking the natural logarithm gives

$$
\frac{\ln (x+\ln (x))}{x-1}
$$

and evaluating gives $0 / 0$. Differentiating top and bottom, we get

$$
\frac{\frac{1+1 / x}{x+\ln (x)}}{1}
$$

which evaluates to 2 . Therefore the original limit is

$$
\lim _{x \rightarrow 1}(x+\ln (x))^{\frac{1}{x-1}}=e^{2}
$$

4. We need to find the minimum and maximum values to find the range.

$$
f^{\prime}(x)=4 x^{3}-12 x^{2}-16 x=4 x\left(x^{2}-3 x-4\right)=4 x(x-4)(x+1)
$$

Thus the only critical point in the interval is $x=4$, and the values of $f(x)$ at the endpoints and this critical point are $f(1)=-3, f(4)=-120$ and $f(5)=-67$. Therefore the range is the closed interval $[-120,-3]$.
5. We have that $y=\frac{45}{x}$ and we seek to minimize $5 x+4 y=5 x+\frac{180}{x}$. Differentiating,

$$
\begin{aligned}
& 5-\frac{180}{x^{2}}=0 \\
& x^{2}=36 \\
& x= \pm 6
\end{aligned}
$$

The problem asked for a positive value of x, so we have $x=6$ and $y=\frac{45}{6}=7.5$.
6. There are vertical asymptotes at $x= \pm \sqrt{3}$. There are no horizontal asymptotes since the degree of the numerator is greater than the degree of the denominator.
We have $f(0)=0$, and this is the only x-intercept (and the unique y-intercept, as normal).
The derivative vanishes at -3 , at 0 and at 3 , and these are a maximum, neither min nor max, minimum respectively (by the first derivative test). The graph of $f(x)$ increases to a local maximum at $(-3,-18)$ the descends to $-\infty$ as $x \rightarrow-\sqrt{3}$ from below, and descending from $+\infty$ as x increases above $-\sqrt{3}$. There is a horizontal tangent line at $x=0$ (through the axis-intercepts at $(0,0)$), and then $f(x)$ continues to decrease to $-\infty$ as $x \rightarrow+\sqrt{3}$. It then decends from $+\infty$ as x increases above $+\sqrt{3}$, decreasing to a local minimum at $(3,18)$ and then $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.

