Math 220 - Fall 2010 Exam 1 Solutions

1. (a) $x^{2}-5 x+6=(x-2)(x-3)$ so $\lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x-2}=2-3=-1$.
(b) For x slightly larger than 2, the numerator is negative and the denominator positive. So $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-5 x+5}{x-2}=$ $-\infty$.
(c) For $x<2, x^{2}-5 x+6>0$, so $\lim _{x \rightarrow 2^{-}} \frac{\left|x^{2}-5 x+6\right|}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{(x-2)(x-3)}{x-2}=-1$.
(d) The degree of the numerator is less than the degree of the denominator, so $\lim _{x \rightarrow \infty} \frac{3 x^{2}-7 x+1}{x^{3}-1}=0$.
2. (b) $f^{\prime}(x)=3(4 x-7)^{2}(4)\left(7 x^{2}+4\right)^{4}+4(4 x-7)^{3}\left(7 x^{2}+4\right)^{3}(14 x)$.
(c) $f^{\prime}(x)=\frac{3(x+5 \tan (3 x))-3 x\left(1+15 \sec ^{2}(3 x)\right)}{(x+5 \tan (3 x))^{2}}$.
(d) $f^{\prime}(x)=12 \sin ^{2}(4 x+1) \cos (4 x+1)$.
3. $A=L W$. Differentiating with respect to time, we have

$$
A^{\prime}=L^{\prime} W+W^{\prime} L=(2)(8)+(-3)(10)=-14
$$

The units are square feet per second.
5. Implicitly differentiating with respect to x,

$$
3(x+2 y)^{2}\left(1+2 y^{\prime}\right)+3(2 x+y)^{2}\left(2+y^{\prime}\right)+2 y+2 x y^{\prime}=0 .
$$

Substituting for x and y and solving for y^{\prime},

$$
\begin{aligned}
3(-1+2)^{2}\left(1+2 y^{\prime}\right)+3(-2+1)^{2}\left(2+y^{\prime}\right)+2-2 y^{\prime} & =0 \\
3+6 y^{\prime}+6+3 y^{\prime}+2-2 y^{\prime} & =0 \\
7 y^{\prime} & =-11 \\
y^{\prime} & =\frac{-11}{7}
\end{aligned}
$$

Thus the tangent line is

$$
y-1=\frac{-11}{7}(x+1)
$$

6. Let $f(x)=\sqrt{x}$. Since $x=99.6$ is close to $a=100$, where f is easy to evaluate, we use linear approximation there. We have $f^{\prime}(a)=\frac{1}{2 \sqrt{a}}=\frac{1}{20}$. Then

$$
\begin{aligned}
\sqrt{99.6}=f(x) & \approx f(a)+f^{\prime}(a)(x-a) \\
& =10+\frac{1}{20}(99.6-100) \\
& =10-0.02 \\
& =9.98
\end{aligned}
$$

7. The derivative is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

$\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ is also acceptable.

