1. (4 points each) Determine the given limit.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x-2}=$
(b) $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-5 x+5}{x-2}=$
(c) $\lim _{x \rightarrow 2^{-}} \frac{\left|x^{2}-5 x+6\right|}{x-2}=$ \qquad
(d) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-7 x+1}{x^{3}-1}=$ \qquad
(e) $\lim _{x \rightarrow 0} \frac{21^{x}-1}{x}=$
2. (5 points each) Determine the derivative function.
(a) $f(x)=\sqrt{x^{2}+e^{2 x}}$
(b) $f(x)=(4 x-7)^{3}\left(7 x^{2}+4\right)^{4}$
(c) $f(x)=\frac{3 x}{x+5 \tan 3 x}$
(d) $f(x)=\sin ^{3}(4 x+1)$
(e) $f(x)=\left(1-x^{2}\right)^{10}+10^{1-x^{2}}$
(f) $f(x)=x^{2} \ln \left(1+x^{2}\right)$
(g) $f(x)=\ln \left(\frac{e^{2 x}(3 x+7)^{2}}{(x+2 \cos (x))^{2}}\right)$
(h) $f(x)=x^{3 x}$
3. (5 points) Determine the inverse of

$$
f(x)=4+7 e^{-x / 2}
$$

4. (10 pts) The length of a rectangle is increasing by $2 \mathrm{ft} / \mathrm{sec}$ and the width is decreasing by $3 \mathrm{ft} / \mathrm{sec}$. At what rate is the area changing when the length is 10 ft and the width is 8 ft ?
5. (10 pts) Determine the equation of the tangent line to the curve

$$
(x+2 y)^{3}+(2 x+y)^{3}+2 x y=-2
$$

at the point $(-1,1)$.
6. (10 pts) Use linear approximation to estimate the value of $\sqrt{99.6}$.
7. (5 pts) State the definition of the derivative of a function $f(x)$ at a value $x=a$. Use limits.

