\qquad

1. When a camera flash goes off, the batteries immediately begin to recharge the flash's capacitor, which stores electric charge given by

$$
Q(t)=Q_{0}\left(1-e^{-t / 2}\right)
$$

(a) Determine the maximum charge capacity?
(b) How long does it take to recharge the capacitor to 90% of capacity?
(c) Determine the inverse of this function.
2. Give a trigonometric equation that best describes the graph below.

3. A boy runs along a straight line with constant speed. If you first see him at the point $A(-2,3)$ and one second later he is at $B(5,7)$ give parametric equtions that spot the boy's position at time t.
4. The position of a body at time t along a linear path can be determined by $s(t)=$ $4 t-t^{2}, t \geq 0$.
(a) Determine the average velocity of the body from $t=3$ to $t=3+h$.
(b) Determine the average velocity of the body on $[2.75,3]$.
(c) Determine the instantaneous velocity of the body at time $t=4$.
(d) If this position at time t is graphed, give the equation of the tangent line to the graph at $t=3$.
5. The graph of the derivative $f^{\prime}(x)$ is shown below.

(a) Sketch a possible detailed graph of $f(x)$

(b) Sketch a possible detailed graph of $f^{\prime \prime}(x)$

6. Determine the limits

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=\quad \lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2}=
$$

7. Calculate the derivative of each of the following functions.
(a) $f(x)=4 x^{5}-3 x-2^{x}+5 \sqrt{x}+\frac{2}{x^{3}}$
(b) $y=\frac{2 e^{x}}{x^{2}-4}$
(c) $v(x)=\frac{\sqrt{x}+x^{2}}{x}$
(d) $s(t)=3^{t} t^{3}$
