1. Let $\vec{a} = \langle 2, 1 \rangle$ and $\vec{b} = \langle 1, 3 \rangle$

- (a) Evaluate $||\vec{a} + \vec{b}||$.
- (b) Find the unit vector in the direction of \vec{b} .
- (c) Find all values of t such that \vec{a} is perpendicular to $\vec{c} = \langle -4, 8t \rangle$.
- 2. (a) Give a parametric vector equation for a circle of radius 9 with the center at the point P(1,-2).
 - (b) The trajectory of an object is determined by $\vec{r}(t) = \langle 2t, -2t^2 + 16t \rangle$ where $-\infty \leq t \leq \infty$. Eliminate the parameter t and find an equation in x and y that determines the curve on which the object moves.

3. Let $f(x) = x(x-1)^2$, where $-\infty \le x \le \infty$.

- (a) Find all points where f has a local maximum or local minimum. Justify your answers.
- (b) Find all inflection points. Justify your answer.
- (c) Graph the function.
- 4. Find x_2 , the second iterate in Newton's method, to find an approximate value for the negative solution of $x^4 = 10100$. Assume that $x_1 = -10$. Show all details.
- 5. (a) Find the equation for the line tangent to $y=x^{1/4}$ at x=10000. Hint: $(10000)^{1/4}=10$.
 - (b) Use the tangent line found in part (a) to obtain an approximate value for $(10100)^{1/4}$.

6. (a) Evaluate $\lim_{x\to 0} \frac{x}{\sqrt{x+4}-2}$

- (b) Evaluate $\lim_{x\to 3^-} \frac{|x-3|}{x-3}$
- (c) Evaluate $\lim_{x\to 1} \frac{\arctan(\tan(2x-5))}{2x-5}$

(d) Evaluate
$$\lim_{x \to -\infty} \frac{\ln\left(1 + \frac{3}{x^3}\right)}{\sin\left(\frac{4}{x^2}\right)}$$

- (e) Evaluate $\lim_{x\to 0} x^2 \ln(x^2)$
- 7. (a) Evaluate $\int \frac{dx}{4 + 25x^2} dx$
 - (b) Evaluate $\int (12^x + x^{1/2}) dx$
 - (c) Evaluate Let $f(x) = \int_0^{2x} \frac{dt}{\sqrt{1+t^2}} dt$. Find $\frac{df}{dx}$
- 8. (a) Find $\frac{dy}{dx}$ at the point (x,y)=(0,1) on the curve defined by the equation $y^2+xe^{y^2}=1$.
 - (b) Let $y = \arctan(3\sin^2(x))$. Find $y'\left(\frac{\pi}{4}\right)$.
 - (c) Let $y = x^{2x}$. Find $\frac{dy}{dx}$.
- 9. A particle moves along the curve $2x^2 xy + 3y^2 = 24$. If at a given time, the particle is at position (-3, 1) and the x coordinate of its velocity at this point is 5, then find the y coordinate of the velocity.